We consider the problem of estimating independent and possibly high–dimensional normal means vectors in a sparse empirical Bayes framework that glues together a recent manifold–modelling technique called diffusion maps, with a more classical concept of sparsity based on the assumption that most of the unknown coordinates of model parameter are actually 0.

Diffusion driven empirical Bayes estimation of high-dimensional Normal Means vectors / Brutti, Pierpaolo. - STAMPA. - (2009), pp. 103-107. (Intervento presentato al convegno S.Co. 2009 tenutosi a Milano).

Diffusion driven empirical Bayes estimation of high-dimensional Normal Means vectors

BRUTTI, Pierpaolo
2009

Abstract

We consider the problem of estimating independent and possibly high–dimensional normal means vectors in a sparse empirical Bayes framework that glues together a recent manifold–modelling technique called diffusion maps, with a more classical concept of sparsity based on the assumption that most of the unknown coordinates of model parameter are actually 0.
2009
S.Co. 2009
Empirical Bayes, Many Normal Means Model, Diffusion
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Diffusion driven empirical Bayes estimation of high-dimensional Normal Means vectors / Brutti, Pierpaolo. - STAMPA. - (2009), pp. 103-107. (Intervento presentato al convegno S.Co. 2009 tenutosi a Milano).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/416426
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact