Coherent- and incoherent-scattering cross sections for the elements Al, Cu, Y, In, Au, and Pb were measured using nearly monoenergetic unpolarized 35.86 and 39.96 keV X-ray beams with high-resolution Si (Li) detectors. Bremsstrahlung radiation from an X-ray tube was used to excite nearly monoenergetic X-rays in secondary targets. To improve the efficiency of the detection system the excitation source, detector, and the target assembly were placed in a vacuum chamber and a pressure of 10(-2) mbar was maintained throughout the measurements. This system considerably reduced the background and scattering effects and improved the monochromacy. Experimental coherent-scattering cross sections are compared with the normalized integrated coherent-scattering cross sections calculated using the relativistic, nonrelativistic, and relativistic-modified form factors. Experimental incoherent-scattering cross sections are compared with the theoretical values, calculated using the nonrelativistic incoherent-scattering function. Good correspondence is observed between experimental and theoretical values in the given energy region
Coherent and incoherent scattering of low energy X-ray photons in the atomic region 13 Z 82 / Rao, D. V.; Cesareo, R.; Gigante, Giovanni Ettore. - In: CANADIAN JOURNAL OF PHYSICS. - ISSN 0008-4204. - STAMPA. - 74:1-2(1996), pp. 10-16. [10.1139/p96-003]
Coherent and incoherent scattering of low energy X-ray photons in the atomic region 13 Z 82
GIGANTE, Giovanni Ettore
1996
Abstract
Coherent- and incoherent-scattering cross sections for the elements Al, Cu, Y, In, Au, and Pb were measured using nearly monoenergetic unpolarized 35.86 and 39.96 keV X-ray beams with high-resolution Si (Li) detectors. Bremsstrahlung radiation from an X-ray tube was used to excite nearly monoenergetic X-rays in secondary targets. To improve the efficiency of the detection system the excitation source, detector, and the target assembly were placed in a vacuum chamber and a pressure of 10(-2) mbar was maintained throughout the measurements. This system considerably reduced the background and scattering effects and improved the monochromacy. Experimental coherent-scattering cross sections are compared with the normalized integrated coherent-scattering cross sections calculated using the relativistic, nonrelativistic, and relativistic-modified form factors. Experimental incoherent-scattering cross sections are compared with the theoretical values, calculated using the nonrelativistic incoherent-scattering function. Good correspondence is observed between experimental and theoretical values in the given energy regionI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.