All-trans retinoic acid (tRA), a naturally occurring ligand of the nuclear retinoic acid receptors (RARs), induces differentiation of leukemic cells and clinical complete remission in patients with acute promyelocytic leukemia (APL). This differentiation effect can also be seen in vitro in both fresh leukemic cells and in the unique permanent APL cell line, NB4. However, APL cells become resistant to RA-induced differentiation both in vitro and in patients. Although pharmacodynamic mechanisms of resistance have been reported, there is growing evidence that resistance both in patients, as well as in vitro, can be mediated by changes in the sensitivity of leukemic cells to retinoids. To investigate possible mechanisms of retinoid resistance, we established subclones of NB4 that are stably resistant to both tRA and 9-cisRA. Unlike the previously reported NB4.306 retinoid-resistant cells, these subclones expressed PML/RAR-alpha RNA and protein, but demonstrated altered ligand binding patterns of PML/RAR-alpha and differed in retinoid-induced gene expression. They were significantly less able to stimulate transcription of an RARE driven CAT-reporter gene on induction by tRA and showed altered DNA binding activity on a RARE. These data suggest that NB4 cells selected for resistance to retinoids demonstrate abnormal ligand binding to PML/RAR-alpha that lead to altered transcriptional activation by retinoids.

Alterations in expression, binding to ligand and DNA, and transcriptional activity of rearranged and wild-type retinoid receptors in retinoid-resistant acute promyelocytic leukemia cell lines / Rosenauer, A; Raelson, Jv; Nervi, Clara; Eydoux, P; Deblasio, A; Miller WH, J. r.. - In: BLOOD. - ISSN 0006-4971. - STAMPA. - 88:(1996), pp. -2671.

Alterations in expression, binding to ligand and DNA, and transcriptional activity of rearranged and wild-type retinoid receptors in retinoid-resistant acute promyelocytic leukemia cell lines

NERVI, Clara;
1996

Abstract

All-trans retinoic acid (tRA), a naturally occurring ligand of the nuclear retinoic acid receptors (RARs), induces differentiation of leukemic cells and clinical complete remission in patients with acute promyelocytic leukemia (APL). This differentiation effect can also be seen in vitro in both fresh leukemic cells and in the unique permanent APL cell line, NB4. However, APL cells become resistant to RA-induced differentiation both in vitro and in patients. Although pharmacodynamic mechanisms of resistance have been reported, there is growing evidence that resistance both in patients, as well as in vitro, can be mediated by changes in the sensitivity of leukemic cells to retinoids. To investigate possible mechanisms of retinoid resistance, we established subclones of NB4 that are stably resistant to both tRA and 9-cisRA. Unlike the previously reported NB4.306 retinoid-resistant cells, these subclones expressed PML/RAR-alpha RNA and protein, but demonstrated altered ligand binding patterns of PML/RAR-alpha and differed in retinoid-induced gene expression. They were significantly less able to stimulate transcription of an RARE driven CAT-reporter gene on induction by tRA and showed altered DNA binding activity on a RARE. These data suggest that NB4 cells selected for resistance to retinoids demonstrate abnormal ligand binding to PML/RAR-alpha that lead to altered transcriptional activation by retinoids.
1996
01 Pubblicazione su rivista::01a Articolo in rivista
Alterations in expression, binding to ligand and DNA, and transcriptional activity of rearranged and wild-type retinoid receptors in retinoid-resistant acute promyelocytic leukemia cell lines / Rosenauer, A; Raelson, Jv; Nervi, Clara; Eydoux, P; Deblasio, A; Miller WH, J. r.. - In: BLOOD. - ISSN 0006-4971. - STAMPA. - 88:(1996), pp. -2671.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/409097
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 70
social impact