La ricerca delle radici della geometria descrittiva nella stereotomia ha portato a ripercorrere gli algoritmi di costruzione di alcune architetture litiche con i contemporanei metodi digitali della rappresentazione. Le opere in pietra da taglio sono costituite da elementi progettati fuori opera il cui insieme modella una forma complessiva che deriva dalle superfici dei conci di cui si compone. Si comprende allora come la progettazione delle opere in pietra da taglio richieda una approfondita conoscenza delle superfici dei corpi, delle loro sezioni piane, delle loro mutue intersezioni. Nel vasto repertorio che ci è pervenuto attraverso numerosi trattati pubblicati dal Rinascimento in poi, le scale elicoidali occupano costantemente uno spazio di rilievo. Si tratta di apparecchiature in cui i gradini, trattati come conci, sono gli elementi generativi della forma che si palesa per sovrapposizione e rotazione degli stessi. La rappresentazione matematica, intesa come strumento di conoscenza, permette di rivisitare alcuni capitoli della geometria descrittiva attualizzando quelle scienze che parteciparono a pieno titolo della sua storia e di esplorare alcune proprietà geometriche delle figure solide nello spazio che sino ad oggi, con i metodi grafici della rappresentazione, non è stato possibile indagare.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Modelli litici di scale elicoidali |
Autori: | |
Data di pubblicazione: | 2011 |
Handle: | http://hdl.handle.net/11573/406108 |
ISBN: | 9788865420461 |
Appartiene alla tipologia: | 04b Atto di convegno in volume |