This study examined brain areas involved in tonic pain perception. Cerebral blood flow was assessed by dynamic Xenon-133 inhalation single-photon emission tomography (SPET) in 7 healthy right-handed male volunteers undergoing the cold pressor test (CPT). In single experimental sessions, each subject was scanned twice, once in the resting state and once while immersing the left hand in freezing water (0 degrees C +/- 1). Immersion of the hand induced severe pain (visual analogue scale: 6.9 +/- 1.9) in all subjects. After correction for pCO2, cerebral blood flow was analyzed by placing a template of square regions of interest (ROIs) over 5 selected tomographic slices. Relative to the resting-state values, during the CPT, flow determinations revealed a 7-8% regional blood flow increase in the contralateral frontal lobe and bilateral temporal regions and a 15% flow increase in a ROI located over the primary sensorimotor cortex in the tomogram at 80 mm above the orbito-meatal line (corresponding to the cortical somatotopic representation of the hand) contralateral to the stimulated side. The tonic pain induced by the CPT thus appears to activate the contralateral frontal and bilateral temporal regions and more prominently, the primary sensorimotor cortex. This pattern of activation suggests that tonic painful stimuli activate the cortex partly via complex circuits and partly via direct somatosensory pathways.

A cerebral blood flow study on tonic pain activation in man / Piero, V. D.; Ferracuti, Stefano; Sabatini, U.; Pantano, P.; Cruccu, Giorgio; Lenzi, G. L.. - In: PAIN. - ISSN 0304-3959. - STAMPA. - 56:2(1994), pp. 167-173. [10.1016/0304-3959(94)90091-4]

A cerebral blood flow study on tonic pain activation in man.

FERRACUTI, Stefano;P. Pantano;CRUCCU, Giorgio;
1994

Abstract

This study examined brain areas involved in tonic pain perception. Cerebral blood flow was assessed by dynamic Xenon-133 inhalation single-photon emission tomography (SPET) in 7 healthy right-handed male volunteers undergoing the cold pressor test (CPT). In single experimental sessions, each subject was scanned twice, once in the resting state and once while immersing the left hand in freezing water (0 degrees C +/- 1). Immersion of the hand induced severe pain (visual analogue scale: 6.9 +/- 1.9) in all subjects. After correction for pCO2, cerebral blood flow was analyzed by placing a template of square regions of interest (ROIs) over 5 selected tomographic slices. Relative to the resting-state values, during the CPT, flow determinations revealed a 7-8% regional blood flow increase in the contralateral frontal lobe and bilateral temporal regions and a 15% flow increase in a ROI located over the primary sensorimotor cortex in the tomogram at 80 mm above the orbito-meatal line (corresponding to the cortical somatotopic representation of the hand) contralateral to the stimulated side. The tonic pain induced by the CPT thus appears to activate the contralateral frontal and bilateral temporal regions and more prominently, the primary sensorimotor cortex. This pattern of activation suggests that tonic painful stimuli activate the cortex partly via complex circuits and partly via direct somatosensory pathways.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/405613
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 84
  • ???jsp.display-item.citation.isi??? 77
social impact