Coherent synchrotron radiation (CSR) generated by high intensity electron beams can be a source of undesirable effects limiting the performance of storage rings. The complexity of the physical mechanisms underlying the interplay between the electron beam and the CSR demands for reliable simulation codes. In the past, codes based on Lie algebraic techniques have been very efficient to treat transport problems in accelerators. The extension of these methods to the non linear case is ideally suited to treat wakefields - beam interaction. In this paper we report on the development of a numerical code, based on the solution of the Vlasov equation, which includes the non linear contribution due to wakefields. The proposed solution method exploits an algebraic technique that uses the exponential operators. We show that, in the case of CSR wakefields, the integration procedure is capable of reproducing the onset of an instability which leads to microbunching of the beam thus increasing the CSR at short wavelengths. In addition, considerations on the threshold of the instability for Gaussian bunches is also reported.

Simulations of coherent synchrotron radiation effects in electron machines / Migliorati, Mauro; Schiavi, Angelo; G., Dattoli. - In: INTERNATIONAL JOURNAL OF MODERN PHYSICS A. - ISSN 0217-751X. - Vol. 22, N. 23:(2007), pp. 4235-4244. [10.1142/S0217751X07037780]

Simulations of coherent synchrotron radiation effects in electron machines

MIGLIORATI, Mauro;SCHIAVI, ANGELO;
2007

Abstract

Coherent synchrotron radiation (CSR) generated by high intensity electron beams can be a source of undesirable effects limiting the performance of storage rings. The complexity of the physical mechanisms underlying the interplay between the electron beam and the CSR demands for reliable simulation codes. In the past, codes based on Lie algebraic techniques have been very efficient to treat transport problems in accelerators. The extension of these methods to the non linear case is ideally suited to treat wakefields - beam interaction. In this paper we report on the development of a numerical code, based on the solution of the Vlasov equation, which includes the non linear contribution due to wakefields. The proposed solution method exploits an algebraic technique that uses the exponential operators. We show that, in the case of CSR wakefields, the integration procedure is capable of reproducing the onset of an instability which leads to microbunching of the beam thus increasing the CSR at short wavelengths. In addition, considerations on the threshold of the instability for Gaussian bunches is also reported.
2007
01 Pubblicazione su rivista::01a Articolo in rivista
Simulations of coherent synchrotron radiation effects in electron machines / Migliorati, Mauro; Schiavi, Angelo; G., Dattoli. - In: INTERNATIONAL JOURNAL OF MODERN PHYSICS A. - ISSN 0217-751X. - Vol. 22, N. 23:(2007), pp. 4235-4244. [10.1142/S0217751X07037780]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/404759
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact