Abstract The possible acute morphological changes induced by electrical transcranial unifocal stimulation (eTCS) in the rabbit extracerebral tissues were studied by light and scanning electron microscopy. In order to do this, a wide range of electric stimuli with respect to those employed in the clinical practice were utilized. Either surface electrodes were attached to the scalp, or needle electrodes were infixed in the subcutaneous tissue. Beneath the cathode a blood extravasation was constantly observed in the subcutaneous tissue of the scalp; the different electrode arrays produced either a large hemorrhagic lesion or a few petechiae. Beneath the anode, the damage was limited to the scalp, or reached the meninges when stimuli longer than 0.2 ms were used. Irrespective of the electrode arrays, the scalp and the dura mater displayed hemorrhagic petechiae over a limited area about 2-3 mm in extent. Moreover, the leptomeningeal membrane was microscopically disrupted over an area less than 1 mm large; therein the squamous, overlapping cells were transformed into fusiform or macrophage-like cells. Unduly intense eTCS produces evident hemorrhagic lesions in the scalp and in the dura mater, whereas it induces microscopic, reactive changes in the leptomeninx.
Transcranial unifocal stimulation in rabbit: subcutaneous and meningeal changes / Sancesario, G.; Massa, R.; Petrillo, S.; Nottola, Stefania Annarita; Correr, Silvia; Rossini, P. M.. - In: EUROPEAN NEUROLOGY. - ISSN 0014-3022. - STAMPA. - 29:(1989), pp. 93-98. [10.1159/000116386]
Transcranial unifocal stimulation in rabbit: subcutaneous and meningeal changes
NOTTOLA, Stefania Annarita;CORRER, Silvia;
1989
Abstract
Abstract The possible acute morphological changes induced by electrical transcranial unifocal stimulation (eTCS) in the rabbit extracerebral tissues were studied by light and scanning electron microscopy. In order to do this, a wide range of electric stimuli with respect to those employed in the clinical practice were utilized. Either surface electrodes were attached to the scalp, or needle electrodes were infixed in the subcutaneous tissue. Beneath the cathode a blood extravasation was constantly observed in the subcutaneous tissue of the scalp; the different electrode arrays produced either a large hemorrhagic lesion or a few petechiae. Beneath the anode, the damage was limited to the scalp, or reached the meninges when stimuli longer than 0.2 ms were used. Irrespective of the electrode arrays, the scalp and the dura mater displayed hemorrhagic petechiae over a limited area about 2-3 mm in extent. Moreover, the leptomeningeal membrane was microscopically disrupted over an area less than 1 mm large; therein the squamous, overlapping cells were transformed into fusiform or macrophage-like cells. Unduly intense eTCS produces evident hemorrhagic lesions in the scalp and in the dura mater, whereas it induces microscopic, reactive changes in the leptomeninx.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.