In this paper, we investigate the feasibility of applying algorithms based on the Uniform Confidence bounds applied to Trees [12] to the satisfiability of CNF formulas. We develop a new family of algorithms based on the idea of balancing exploitation (depth-first search) and exploration (breadth-first search), that can be combined with two different techniques to generate random playouts or with a heuristics-based evaluation function. We compare our algorithms with a DPLL-based algorithm and with WalkSAT, using the size of the tree and the number of flips as the performance measure. While our algorithms perform on par with DPLL on instances with little structure, they do quite well on structured instances where they can effectively reuse information gathered from one iteration on the next. We also discuss the pros and cons of our different algorithms and we conclude with a discussion of a number of avenues for future work. © 2011 Springer-Verlag Berlin Heidelberg.

Monte-Carlo style UCT search for boolean satisfiability / Alessandro, Previti; Raghuram, Ramanujan; Schaerf, Marco; Bart, Selman. - STAMPA. - 6934 LNAI:(2011), pp. 177-188. ( 12th International Conference of the Italian Association for Artificial Intelligence, AI*IA 2011 Palermo; Italy ) [10.1007/978-3-642-23954-0_18].

Monte-Carlo style UCT search for boolean satisfiability

SCHAERF, Marco;
2011

Abstract

In this paper, we investigate the feasibility of applying algorithms based on the Uniform Confidence bounds applied to Trees [12] to the satisfiability of CNF formulas. We develop a new family of algorithms based on the idea of balancing exploitation (depth-first search) and exploration (breadth-first search), that can be combined with two different techniques to generate random playouts or with a heuristics-based evaluation function. We compare our algorithms with a DPLL-based algorithm and with WalkSAT, using the size of the tree and the number of flips as the performance measure. While our algorithms perform on par with DPLL on instances with little structure, they do quite well on structured instances where they can effectively reuse information gathered from one iteration on the next. We also discuss the pros and cons of our different algorithms and we conclude with a discussion of a number of avenues for future work. © 2011 Springer-Verlag Berlin Heidelberg.
2011
12th International Conference of the Italian Association for Artificial Intelligence, AI*IA 2011
artificial intelligence; algorithms; game tree
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Monte-Carlo style UCT search for boolean satisfiability / Alessandro, Previti; Raghuram, Ramanujan; Schaerf, Marco; Bart, Selman. - STAMPA. - 6934 LNAI:(2011), pp. 177-188. ( 12th International Conference of the Italian Association for Artificial Intelligence, AI*IA 2011 Palermo; Italy ) [10.1007/978-3-642-23954-0_18].
File allegati a questo prodotto
File Dimensione Formato  
Previti_Monte-Carlo_2011.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 394.57 kB
Formato Adobe PDF
394.57 kB Adobe PDF   Contatta l'autore
VE_2011_11573-398504.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 394.57 kB
Formato Adobe PDF
394.57 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/398504
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact