Pressurized hot water extraction (PHWE, also known as subcritical water extraction) is commonly considered to be an environmentally friendly extraction technique that could potentially replace traditional methods that use organic solvents. Unfortunately, the applicability of this technique is often limited by the very low water solubility of the target compounds, even at high temperatures. In this paper, the scope for broadening the applicability of PHWE by adjusting the pH of the water used in the extraction is demonstrated in the extraction of curcumin (which exhibits very limited water solubility) from untreated turmeric (Curcuma longa L.) rhizomes. Although poor extraction yields were obtained, even at high temperatures when using degassed water or neutral phosphate buffer as the extraction medium, yields exceeding those obtained by Soxhlet extraction were achieved using highly acidic pH buffers due to curcumin protonation. The influence of the temperature, pH, and buffer concentration on the extraction yield were investigated in detail by means of a series of designed experiments. Optimized conditions for the extraction of curcumin from turmeric by PHWE were estimated at 197 A degrees C using 62 g/L buffer concentration at pH 1.6. The relationships between these variables were subjected to statistical analysis using response surface methodology.

Extending the applicability of pressurized hot water extraction to compounds exhibiting limited water solubility by pH control: curcumin from the turmeric rhizome / Maria Anna, Euterpio; Capriotti, ANNA LAURA; Cavaliere, Chiara; Carlo, Crescenzi. - In: ANALYTICAL AND BIOANALYTICAL CHEMISTRY. - ISSN 1618-2642. - STAMPA. - 401:9(2011), pp. 2977-2985. [10.1007/s00216-011-5383-7]

Extending the applicability of pressurized hot water extraction to compounds exhibiting limited water solubility by pH control: curcumin from the turmeric rhizome

CAPRIOTTI, ANNA LAURA;CAVALIERE, CHIARA;
2011

Abstract

Pressurized hot water extraction (PHWE, also known as subcritical water extraction) is commonly considered to be an environmentally friendly extraction technique that could potentially replace traditional methods that use organic solvents. Unfortunately, the applicability of this technique is often limited by the very low water solubility of the target compounds, even at high temperatures. In this paper, the scope for broadening the applicability of PHWE by adjusting the pH of the water used in the extraction is demonstrated in the extraction of curcumin (which exhibits very limited water solubility) from untreated turmeric (Curcuma longa L.) rhizomes. Although poor extraction yields were obtained, even at high temperatures when using degassed water or neutral phosphate buffer as the extraction medium, yields exceeding those obtained by Soxhlet extraction were achieved using highly acidic pH buffers due to curcumin protonation. The influence of the temperature, pH, and buffer concentration on the extraction yield were investigated in detail by means of a series of designed experiments. Optimized conditions for the extraction of curcumin from turmeric by PHWE were estimated at 197 A degrees C using 62 g/L buffer concentration at pH 1.6. The relationships between these variables were subjected to statistical analysis using response surface methodology.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/395375
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 38
social impact