Asymmetric behaviour in both mean and variance is often observed in real time series. The approach we adopt is based on double threshold autoregressive conditionally heteroscedastic (DTARCH) model with normal innovations. This model allows threshold nonlinearity in mean and volatility to be modelled as a result of the impact of lagged changes in assets and squared shocks, respectively. A methodology for building DTARCH models is proposed based on genetic algorithms (GAs). The most important structural parameters, that is regimes and thresholds, are searched for by GAs, while the remaining structural parameters, that is the delay parameters and models orders, vary in some pre-specified intervals and are determined using exhaustive search and an Asymptotic Information Criterion (AIC) like criterion. For each structural parameters trial set, a DTARCH model is fitted that maximizes the (penalized) likelihood (AIC criterion). For this purpose the iteratively weighted least squares algorithm is used. Then the best model according to the AIC criterion is chosen. Extension to the double threshold generalized ARCH (DTGARCH) model is also considered. The proposed methodology is checked using both simulated and market index data. Our findings show that our GAs-based procedure yields results that comparable to that reported in the literature and concerned with real time series. As far as artificial time series are considered, the proposed procedure seems to be able to fit the data quite well. In particular, a comparison is performed between the present procedure and the method proposed by Tsay [Tsay, R.S., 1989, Testing and modeling threshold autoregressive processes. Journal of the American Statistical Association, Theory and Methods, 84, 231-240.] for estimating the delay parameter. The former almost always yields better results than the latter. However, adopting Tsay's procedure as a preliminary stage for finding the appropriate delay parameter may save computational time specially if the delay parameter may vary in a large interval.

Double threshold autoregressive conditionally heteroscedastic model building by genetic algorithms / Baragona, Roberto; Cucina, Domenico. - In: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION. - ISSN 0094-9655. - STAMPA. - 78:6(2008), pp. 541-558. [10.1080/00949650701327658]

Double threshold autoregressive conditionally heteroscedastic model building by genetic algorithms

BARAGONA, Roberto;CUCINA, Domenico
2008

Abstract

Asymmetric behaviour in both mean and variance is often observed in real time series. The approach we adopt is based on double threshold autoregressive conditionally heteroscedastic (DTARCH) model with normal innovations. This model allows threshold nonlinearity in mean and volatility to be modelled as a result of the impact of lagged changes in assets and squared shocks, respectively. A methodology for building DTARCH models is proposed based on genetic algorithms (GAs). The most important structural parameters, that is regimes and thresholds, are searched for by GAs, while the remaining structural parameters, that is the delay parameters and models orders, vary in some pre-specified intervals and are determined using exhaustive search and an Asymptotic Information Criterion (AIC) like criterion. For each structural parameters trial set, a DTARCH model is fitted that maximizes the (penalized) likelihood (AIC criterion). For this purpose the iteratively weighted least squares algorithm is used. Then the best model according to the AIC criterion is chosen. Extension to the double threshold generalized ARCH (DTGARCH) model is also considered. The proposed methodology is checked using both simulated and market index data. Our findings show that our GAs-based procedure yields results that comparable to that reported in the literature and concerned with real time series. As far as artificial time series are considered, the proposed procedure seems to be able to fit the data quite well. In particular, a comparison is performed between the present procedure and the method proposed by Tsay [Tsay, R.S., 1989, Testing and modeling threshold autoregressive processes. Journal of the American Statistical Association, Theory and Methods, 84, 231-240.] for estimating the delay parameter. The former almost always yields better results than the latter. However, adopting Tsay's procedure as a preliminary stage for finding the appropriate delay parameter may save computational time specially if the delay parameter may vary in a large interval.
2008
autoregressive conditional heteroscedasticity; double-threshold autoregression; genetic algorithms; nonlinear time series models
01 Pubblicazione su rivista::01a Articolo in rivista
Double threshold autoregressive conditionally heteroscedastic model building by genetic algorithms / Baragona, Roberto; Cucina, Domenico. - In: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION. - ISSN 0094-9655. - STAMPA. - 78:6(2008), pp. 541-558. [10.1080/00949650701327658]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/395040
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 6
social impact