From neutron diffraction it is known that the BaCeO3 perovskite undergoes a sequence of phase transformations from high temperature cubic C to rhombohedral R, to orthorhombic O1 (Imma) and to orthorhombic O2 (Pnma). Doping Y3+ on the Ce4+ site introduces charge compensating O vacancies (VO) that may be partially filled with OH complexes with exposition to H2O, so making the material an ionic conductor. Anelastic relaxation experiments have been carried out on samples doped with 2%Y and 10%Y; the real part s′(T) of the complex elastic compliance presents softenings at the transitions, and the loss s″/s′ curves allow the content of VO and H to be monitored. Doping has a strong effect on the temperature of the Pnma/R transition: with 10%Y in the fully hydrated state TO1-R increases up to 750 K while after full outgassing falls to 500 K, meaning that the introduction of ∼5% VO shifts the transition of 250 K. While the effect of cation substitution on the transitions temperature is easily explained in terms of simple arguments usually valid for perovskites based on bond length considerations, the remarkable stabilization of the R phase by VO requires to take into account the anomalous sequence of phase transitions of undoped BaCeO3, where the R structure transforms into orthorhombic Pnma on cooling with the loss of an octahedral tilt system. © (2011) Trans Tech Publications.
Influence of doping on the structural transformations of the proton conducting perovskite BaCe1-xYxO3-D / Trequattrini, Francesco; Francesco, Cordero; Francesca, Deganello; Valeria La, Parola; Edoardo, Roncari; Alessandra, Sanson. - In: DIFFUSION AND DEFECT DATA, SOLID STATE DATA. PART B, SOLID STATE PHENOMENA. - ISSN 1012-0394. - 172-174:(2011), pp. 1296-1300. ( International Conference on Solid-Solid Phase Transformations in Inorganic Materials, PTM 2010 Avignon 6 June 2010 through 11 June 2010) [10.4028/www.scientific.net/ssp.172-174.1296].
Influence of doping on the structural transformations of the proton conducting perovskite BaCe1-xYxO3-D
TREQUATTRINI, Francesco;
2011
Abstract
From neutron diffraction it is known that the BaCeO3 perovskite undergoes a sequence of phase transformations from high temperature cubic C to rhombohedral R, to orthorhombic O1 (Imma) and to orthorhombic O2 (Pnma). Doping Y3+ on the Ce4+ site introduces charge compensating O vacancies (VO) that may be partially filled with OH complexes with exposition to H2O, so making the material an ionic conductor. Anelastic relaxation experiments have been carried out on samples doped with 2%Y and 10%Y; the real part s′(T) of the complex elastic compliance presents softenings at the transitions, and the loss s″/s′ curves allow the content of VO and H to be monitored. Doping has a strong effect on the temperature of the Pnma/R transition: with 10%Y in the fully hydrated state TO1-R increases up to 750 K while after full outgassing falls to 500 K, meaning that the introduction of ∼5% VO shifts the transition of 250 K. While the effect of cation substitution on the transitions temperature is easily explained in terms of simple arguments usually valid for perovskites based on bond length considerations, the remarkable stabilization of the R phase by VO requires to take into account the anomalous sequence of phase transitions of undoped BaCeO3, where the R structure transforms into orthorhombic Pnma on cooling with the loss of an octahedral tilt system. © (2011) Trans Tech Publications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


