We study how the inclusion of a fractal array of conductive thin fibers affects, and interacts with, the dynamical properties of the surrounding medium. Our approach is variational and is based on singular homogenization. We introduce the energy forms that describe the composite media formed by a two-dimensional Euclidean domain reinforced by an increasing number of thin conductive fibers developing fractal geometry. We study the convergence of the energy, under suitable assumptions for the relative strength of the fibers in relation to the embedding medium. Our results establish convergence of energy and of the spectral measures of the singular elliptic operators describing the composite medium. Copyright (c) 2012 John Wiley & Sons, Ltd.

Thin fractal fibers / Umberto, Mosco; Vivaldi, Maria Agostina. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - STAMPA. - 36:15(2013), pp. 2048-2068. [10.1002/mma.1621]

Thin fractal fibers

VIVALDI, Maria Agostina
2013

Abstract

We study how the inclusion of a fractal array of conductive thin fibers affects, and interacts with, the dynamical properties of the surrounding medium. Our approach is variational and is based on singular homogenization. We introduce the energy forms that describe the composite media formed by a two-dimensional Euclidean domain reinforced by an increasing number of thin conductive fibers developing fractal geometry. We study the convergence of the energy, under suitable assumptions for the relative strength of the fibers in relation to the embedding medium. Our results establish convergence of energy and of the spectral measures of the singular elliptic operators describing the composite medium. Copyright (c) 2012 John Wiley & Sons, Ltd.
2013
weights; elliptic operators; composite media.; singular homogenization; fractals; composite media
01 Pubblicazione su rivista::01a Articolo in rivista
Thin fractal fibers / Umberto, Mosco; Vivaldi, Maria Agostina. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - STAMPA. - 36:15(2013), pp. 2048-2068. [10.1002/mma.1621]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/392330
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 15
social impact