We study the (n+1)-dimensional generalization of the dispersionless Kadomtsev-Petviashvili (dKP) equation, a universal equation describing the propagation of weakly nonlinear, quasi-one-dimensional waves in n + 1 dimensions, and arising in several physical contexts, such as acoustics, plasma physics and hydrodynamics. For n = 2, this equation is integrable, and has been recently shown to be a prototype model equation in the description of the two-dimensional wave breaking of localized initial data. We construct an exact solution of the (n+1)-dimensional model containing an arbitrary function of one variable, corresponding to its parabolic invariance, describing waves, constant on their paraboloidal wave front, breaking simultaneously in all points of it. Then, we use such a solution to build a uniform approximation of the solution of the Cauchy problem, for small and localized initial data, showing that such a small and localized initial data evolving according to the (n+1)-dimensional dKP equation break, in the long time regime, if and only if 1 <= n <= 3, i.e., in physical space. Such a wave breaking takes place, generically, in a point of the paraboloidal wave front, and the analytic aspects of it are given explicitly in terms of the small initial data.

On the dispersionless Kadomtsev-Petviashvili equation in n+1 dimensions: exact solutions, the Cauchy problem for small initial data and wave breaking / S. V., Manakov; Santini, Paolo Maria. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 44:40(2011), p. 405203. [10.1088/1751-8113/44/40/405203]

On the dispersionless Kadomtsev-Petviashvili equation in n+1 dimensions: exact solutions, the Cauchy problem for small initial data and wave breaking

SANTINI, Paolo Maria
2011

Abstract

We study the (n+1)-dimensional generalization of the dispersionless Kadomtsev-Petviashvili (dKP) equation, a universal equation describing the propagation of weakly nonlinear, quasi-one-dimensional waves in n + 1 dimensions, and arising in several physical contexts, such as acoustics, plasma physics and hydrodynamics. For n = 2, this equation is integrable, and has been recently shown to be a prototype model equation in the description of the two-dimensional wave breaking of localized initial data. We construct an exact solution of the (n+1)-dimensional model containing an arbitrary function of one variable, corresponding to its parabolic invariance, describing waves, constant on their paraboloidal wave front, breaking simultaneously in all points of it. Then, we use such a solution to build a uniform approximation of the solution of the Cauchy problem, for small and localized initial data, showing that such a small and localized initial data evolving according to the (n+1)-dimensional dKP equation break, in the long time regime, if and only if 1 <= n <= 3, i.e., in physical space. Such a wave breaking takes place, generically, in a point of the paraboloidal wave front, and the analytic aspects of it are given explicitly in terms of the small initial data.
2011
01 Pubblicazione su rivista::01a Articolo in rivista
On the dispersionless Kadomtsev-Petviashvili equation in n+1 dimensions: exact solutions, the Cauchy problem for small initial data and wave breaking / S. V., Manakov; Santini, Paolo Maria. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 44:40(2011), p. 405203. [10.1088/1751-8113/44/40/405203]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/388155
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact