Using an expansion of the transition density function of a 1-dimensional time inhomogeneous diffusion, we obtain the first and second order terms in the short time asymptotics of European call option prices. The method described can be generalized to any order. We then use these option prices approximations to calculate the first order and second order deviation of the implied volatility from its leading value and obtain approximations which we numerically demonstrate to be highly accurate.

Asymptotics for implied volatility in local volatility models / J., Gatheral; E., Hsu; Laurence, Peter Michael; Cheng, Ouyang; Wang, T. H.. - In: MATHEMATICAL FINANCE. - ISSN 0960-1627. - ELETTRONICO. - (2010), pp. 1-30.

Asymptotics for implied volatility in local volatility models

LAURENCE, Peter Michael;
2010

Abstract

Using an expansion of the transition density function of a 1-dimensional time inhomogeneous diffusion, we obtain the first and second order terms in the short time asymptotics of European call option prices. The method described can be generalized to any order. We then use these option prices approximations to calculate the first order and second order deviation of the implied volatility from its leading value and obtain approximations which we numerically demonstrate to be highly accurate.
2010
01 Pubblicazione su rivista::01a Articolo in rivista
Asymptotics for implied volatility in local volatility models / J., Gatheral; E., Hsu; Laurence, Peter Michael; Cheng, Ouyang; Wang, T. H.. - In: MATHEMATICAL FINANCE. - ISSN 0960-1627. - ELETTRONICO. - (2010), pp. 1-30.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/388020
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact