The paracrine networks of the human melanoma microenvironment are able to influence tumor growth and progression. Among the paracrine growth factors involved in skin homeostasis, the KGF/FGF7 secreted by dermal fibroblasts promotes the epidermal proliferation and differentiation as well as the release from keratinocytes of other paracrine mediators. To evaluate the possible role played by KGF in affecting the behavior of different subtypes of melanoma carrying activating mutations or overexpression of the SCF receptor c-KIT, we used human melanoma cell lines, characterized by different expression levels of c-KIT and opposing responsivity to SCF, and HaCaT keratinocytes. Quantitative real-time reverse transcription-polymerase chain reaction assay and ELISA test on KGF-treated keratinocytes showed enhanced expression and secretion of SCF in response to KGF and dependent on functional KGF receptor. Immunofluorescence microscopy and biochemical analysis showed, in one of the selected melanoma cell models, SCF-dependent c-KIT activation induced by stimulation with the culture supernatants collected from KGF-treated keratinocytes. In keratinocyte-melanoma cocultures stained for the Ki67 proliferation marker, incubation with KGF induced enhanced growth not only of the keratinocytes but also of the melanoma cells, which could be blocked by the c-KIT inhibitor imatinib, demonstrating the establishment of a KGF-induced paracrine signaling network owing to the coexpression of biologically active SCF released from keratinocytes and functional c-KIT on melanoma cells.

KGF Promotes Paracrine Activation of the SCF/c-KIT Axis from Human Keratinocytes to Melanoma Cells / Belleudi, Francesca; Giorgia, Cardinali; Daniela, Kovacs; Mauro, Picardo; Torrisi, Maria Rosaria. - In: TRANSLATIONAL ONCOLOGY. - ISSN 1936-5233. - STAMPA. - 3:2(2010), pp. 80-90. [10.1593/tlo.09196]

KGF Promotes Paracrine Activation of the SCF/c-KIT Axis from Human Keratinocytes to Melanoma Cells

BELLEUDI, Francesca;TORRISI, Maria Rosaria
2010

Abstract

The paracrine networks of the human melanoma microenvironment are able to influence tumor growth and progression. Among the paracrine growth factors involved in skin homeostasis, the KGF/FGF7 secreted by dermal fibroblasts promotes the epidermal proliferation and differentiation as well as the release from keratinocytes of other paracrine mediators. To evaluate the possible role played by KGF in affecting the behavior of different subtypes of melanoma carrying activating mutations or overexpression of the SCF receptor c-KIT, we used human melanoma cell lines, characterized by different expression levels of c-KIT and opposing responsivity to SCF, and HaCaT keratinocytes. Quantitative real-time reverse transcription-polymerase chain reaction assay and ELISA test on KGF-treated keratinocytes showed enhanced expression and secretion of SCF in response to KGF and dependent on functional KGF receptor. Immunofluorescence microscopy and biochemical analysis showed, in one of the selected melanoma cell models, SCF-dependent c-KIT activation induced by stimulation with the culture supernatants collected from KGF-treated keratinocytes. In keratinocyte-melanoma cocultures stained for the Ki67 proliferation marker, incubation with KGF induced enhanced growth not only of the keratinocytes but also of the melanoma cells, which could be blocked by the c-KIT inhibitor imatinib, demonstrating the establishment of a KGF-induced paracrine signaling network owing to the coexpression of biologically active SCF released from keratinocytes and functional c-KIT on melanoma cells.
2010
01 Pubblicazione su rivista::01a Articolo in rivista
KGF Promotes Paracrine Activation of the SCF/c-KIT Axis from Human Keratinocytes to Melanoma Cells / Belleudi, Francesca; Giorgia, Cardinali; Daniela, Kovacs; Mauro, Picardo; Torrisi, Maria Rosaria. - In: TRANSLATIONAL ONCOLOGY. - ISSN 1936-5233. - STAMPA. - 3:2(2010), pp. 80-90. [10.1593/tlo.09196]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/387483
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact