This work is focused on the reconstruction of burial and thermal history of folded and thrust sedimentary successions that range in alteration intensity from diagenesis to very low-grade metamorphism. The aim is to show the potential of clay mineralogy analysis as a tool for understanding the structural framework and the Neogene-Quaternary evolution of the Apennines fold-and-thrust belt and reconstructing the volume of rocks that nowadays are partially or totally eroded (chap. I). Expandability, ‘crystallinity’ and illite crystallite thickness measurements and XRD quantitative analyses have been performed on different grain-size fractions and on the whole-rock samples of shales, clay- and silt-rich lithologies and fine-grained sandstones (chap. II). A new X-ray diffraction method to distinguish diagenetic and detrital illite by using a combined analysis of crystal-size distributions and illite polytypes quantification in siliciclastic sediments has been developed (chaps. II and III). The unmixing method allows to calculate the proportion of illite polytypes, and, therefore, the proportion of detrital illite, from crystallite thickness measurements. Estimating the detrital and diagenetic illite amounts allows to assess quantitative thermal data reliability. These data are converted to paleotemperatures and used for constraining burial histories. Clay mineralogy reaction progress thermal indicators have been integrated and correlated with inorganic and organic thermal parameters coming from other independent methodologies (organic matter maturity, fluid inclusions and apatite fission tracks; chaps. II, III, IV and V). This approach shows the importance of calibration and integration among these different methods. This would shorten the limits on the applicability of each method in order to better define the pattern of tectonic loads and the time-space evolution of an orogen where tectonic exhumation processes occurred at shallow crustal levels. This has been achieved also through computer-aided thermo-structural modelling. To define the thermal evolution and the geodynamical meaning of some sedimentary successions involved in the orogenic wedge, we chose three different areas as case studies: the Modena-Bologna area (chap. III) in the inner zone of the Northern Apennines fold-and-thrust belt; the Lucania area (chap. IV) in the axial zone of the Southern Apennines fold-and-thrust belt; the Nebrodi Mts.-Iblei Mts. section (chap. V) in the Eastern Sicily fold-and-thrust belt. In synthesis, the interpretation of glycolated and air-dried X-ray diffraction patterns highlights a trend of increasing thermal maturity from the younger to the older lithostratigraphic unit within the single tectonic unit; the same is valid from the upper to the lower tectonic unit along the chosen sections through the Apenninic-Maghrebian orogen. The illitic content in the illite/smectite mixed layers and the Reichweite parameter increase as a function of depth. Generally, data from fine-grained sandstones and silt-rich lithologies correlate to more pronounced level of maturation when compared to those from organic matter analysis. Illite crystallite thickness measurements (available for the Cervarola unit) display an increase of the crystal size as a function of burial. It is shown that this increase in thickness is related to an increase in the 2M1 component in the sediments, and that this component does not participate in the mixed layering. Illite ‘crystallinity’ measurements expressed as Kübler index (available for the Lagonegro succession) show the presence of a detrital 10-Å phase of phengite-like composition in the 2-16 µm grain-size fraction that records a situation inherited from the past, not directly related to the burial history. Only data from <2 μm slides suggest a temperature range comparable to that calculated by illite/smectite mixed layers. Northern Apennines fold-and-thrust belt (Modena-Bologna area): a horizontal decreasing maturity trend from the inner (Mt. La Nuda Thrust sheet) to the outer (Pennola Thrust sheet) thrust sheet made up of Granaglione Sandstones from 1.54% to 1.35% (Ro%) and 90% to 80% (%I in illite-smectite mixed layers) and an increase of thermal maturity from the younger to the older sediments in the studied successions has been recognized. This allowed the reconstruction of the Cervarola and Granaglione Sandstones’ maximum burial due to the emplacement of the Modino and Ligurian Units and the definition of the Corno alle Scale thrust geometry. Southern Apennines fold-and-thrust belt (Lucania area): a general trend of increasing thermal maturity from immature-early mature stages to late diagenesis conditions, moving from the upper (Apenninic carbonate Platform derived) to the lower (Mesozoic Lagonegro basin derived) tectonic units respectively has been recognized. This trend has been interpreted as caused by different amounts and timing of tectonic loadings and subsequent erosion and/or exhumation. In addition, slight differences in thermal maturity have been detected along the strike of the chain and related to changes in amounts of tectonic burial and erosion/exhumation due to the lack of cylindricity of contractional structures. Eastern Sicily fold-and-thrust belt (Nebrodi Mts.-Iblei Mts. section): A tentative correlation between organic and inorganic thermal indicators has been attempted and allowed the characterization of the different tectonic units in their specific geodynamic setting. Moreover, the burial and thermal evolution of the Mt. Judica Unit has been unravelled. The Mt. Judica Unit thermal evolution has been acquired before the late Miocene-early Pliocene deformation phase that caused its internal thrust stacking. Calculated maximum temperatures are in the range of 100-125 °C. Results obtained from a few hundreds XRD tracings allowed the development of one-dimensional thermal and structural models and pointed out that the estimated total thickness of the analyzed successions was not enough to justify the high maximum temperatures experienced as caused by pure sedimentary burial. An excess load has to be inferred in order to justify the calculated burial depths. Based on geological literature and interpretations, this excess load generally has been identified in a tectonic loading ranging from 3.5 to 5.0 Km in the Northern Apennines, from 2.0 to 5.0 Km in the Southern Apennines, and of 3.0 Km above the Mt. Judica succession. This research contributes to the reconstruction of the geometries and kinematics of the main structural units forming the Apennines fold-and-thrust belt. It also shares in the implications for palaeogeographic reconstructions, providing independent thermal and thermo-cronological constraints to the existing geodynamic models.

La ricostruzione quantitativa delle storie termiche e di seppellimento delle successioni sedimentarie che costituiscono le catene orogeniche nel campo della diagenesi e del metamorfismo di basso e bassisimo grado rappresenta l’obiettivo principale di questo lavoro. La mineralogia delle argille è uno strumento utile per la definizione dell’evoluzione Neogenico-Quaternaria della catena appenninica e per la ricostruzione dei volumi di roccia delle unità stratigrafico-strutturali oggigiorno parzialmente o totalmente erose (cap. I). Misure di espandibilità, ‘cristallinità’ e di spessore dei cristalliti di illite associate ad analisi quantitative in diffrazione a raggi X sono state condotte su differenti frazioni granulometriche e su campioni tal quale di argilliti, litologie ricche in silt ed argille e su arenarie a grana fine (cap. II). È stato sviluppato un nuovo metodo diffrattometrico per distinguere, nei sedimenti silicoclatici, le illiti detritiche e quelle diagenetiche utilizzando un’analisi comparata di identificazione e quantificazione dei politipi dell’illite e di distribuzione delle dimensioni dei cristalliti di illite stessa (cap. II e III). Questo metodo di decomposizione permette di calcolare, a partire da misure di spessore di cristalliti, la proporzione dei politipi di illite e quindi la quantità di illite detritica presente in un sedimento. La stima delle proporzioni relative delle due componenti (illite detritica e diagenetica) in un sedimento silicoclatico permette di valutare l’attendibilità dei dati termici quantitativi derivanti dalla mineralogia delle argille che devono essere utilizzati nella conversione in paleotemperature e come vincoli nelle ricostruzioni delle storie di seppellimento. Gli indicatori termici mineralogici sono stati integrati e correlati con parametri termici inorganici ed organici provenienti da altre metodologie indipendenti (maturità della materia organica, inclusisioni fluide e tracce di fissione su apatite; cap. II, III, IV e V). Tale approccio metodologico mostra l’importanza di calibrare ed integrare i vari metodi di indagine al fine di una migliore definizione dei carichi tettonici e dell’evoluzione spazio-temporale di un orogene in cui i processi di esumazione avvengono a livelli crostali superficiali. Ciò si è ottenuto attraverso una modellazione termico-strutturale assistita da software dedicati. Per definire l’evoluzione termica e il significato geodinamico di alcune successioni sedimentarie coinvolte nel cuneo orogenico, sono stai scelte come case histories ideali tre aree di indagine site nella zona interna dell’Appennino settentrionale (settore modenese-bolognese, cap. III), nella zona assiale dell’Apennino meridionale (settore lucano, cap. IV) e nella Sicilia orientale (transetto Monti Nebrodi-Monti Iblei, cap. V). In sintesi, l’interpretazione dei tracciati diffrattometrici glicolati ed essicati all’aria evidenzia un incremento della maturità termica dei sedimenti dalle unità litostratigrafiche più giovani a quelle più antiche nella singola unità tettonica analizzata e dall’unità tettonica strutturalmente più elevata a quella più bassa nell’edifico orogenico nei transetti scelti per l’orogene Appenninico-Magrebide. Il contenuto di illite nell’interstratificato illite/smectite e il parametro Reichweite aumentano in funzione della profondità. Generalmente, i dati provenienti dall’analisi di arenarie a grana fine e di litologie particolarmente ricche in silt si correlano a stadi di maturazione più elavati se confrontati con dati di maturità della materia organica. Le misure degli spessori dei cristalliti di illite (disponibili per l’unità del Cervarola) mostrano un aumento delle dimensioni dei cristalli in funzione del seppellimento. Viene dimostrato come l’aumento di spessore dipenda da un aumento del politipo 2M1 nei sedimenti e che tale politipo non partecipa al processo di interstratificazione. Misure di ‘cristallinità’ dell’illite espresse come indice di Kübler (disponibili per la successione lagonegrese) mostrano la presenza di una fase detritica di composizione simile alla fengite nella frazione granulometrica compresa tra 2 e 16 µm che registra una situazione ereditata e non direttamente correlabile alla storia di seppellimento. Soltato i dati relativi alla frazione <2 µm suggeriscono un intervallo di temperatura paragonabile a quello calcolato tramite gli strati misti illite/smectite. Appennino settentrionale (settore modenese-bolognese): è stato individuato un decremento orizzontale della maturità termica delle Arenarie del Granaglione dai thrust sheets più interni (M. La Nuda) a quelli più esterni (Pennola) da 1,54% a 1,35% (Ro%) e da 90% a 80% (%I negli strati misti illite/smectite) ed un aumento della maturità termica dai sedimenti più giovani a quelli più antichi. Ciò ha permesso di ricostruire il massimo seppellimento delle Arenarie del M. Cervarola e del Granaglione dovuto alla messa in posto delle Unità Modino e Liguridi e la geometria del sovrascorrimento Corno alle Scale. Appennino meridionale (settore lucano): è stato identificato un incremento della maturità termica dallo stadio di immaturità di generazione di idrocarburi a quello di diagenesi spinta, andando dall’unità tettonica strutturalmente più elevata nell’edificio orogenico (Piattaforma Appenninica) a quella più bassa (Bacino lagonegrese). Tale andamento è imputabile alla diversa entità e strutturazione dei carichi tettonici e alle successive fasi di erosione e/o esumazione. Inoltre, sono state individuate leggere variazioni di maturità termica lungo lo strike della catena interpretate come variazioni di carico tettonico ed erosione/esumazione dovute alla mancanza di cilindricità delle strutture compressive. Sicilia orientale (transetto Monti Nebrodi-Monti Iblei): è stato effettuato un tentativo di correlazione tra indicatori termici organici ed inorganici. Ciò ha permesso di caratterizzare le differenti unità stratigrafico-strutturali nei loro specifici ambienti geodinamici. Inoltre, è stata ricostruita l’evoluzione termica e di seppellimento dell’Unità di M. Judica acquisita prima della fase deformativa Miocene superiore-Pliocene inferiore che ha prodotto il suo impilamento in scaglie tettoniche. L’intervallo di temperatura massima raggiunta è di 100-125 °C. I risultati ottenuti dall’interpretazione dei tracciati diffrattometrici hanno permesso di creare modelli termici e strutturali unidimensionali mettendo in evidenza che il solo seppellimento sedimentario non giustifica le alte temperature sperimentate dalle successioni sedimentarie analizzate. Un eccedenza di carico deve essere supposta per giustificare tali temperature. L’eccedenza di carico è stata identificata in carichi tettonici variabli da 3,5 a 5,0 Km in Appennino settentrionale, da 2,0 a 5,0 Km in Appennino meridionale e di circa 3,0 Km sulla successione di M. Judica. Questa ricerca contribuisce alla ricostruzione delle geometrie e cinematiche delle principali unità strutturali costituenti la catena appenninica e alle implicazioni delle ricostruzioni paleogeografiche fornendo vincoli termici e termocronologici indipendenti ai modelli geodinamici esistenti.

Relationships between tectonic/sedimentary burial and exhumation in the evolution of the Apennines by means of clay mineralogy / Aldega, Luca. - STAMPA. - (2005).

Relationships between tectonic/sedimentary burial and exhumation in the evolution of the Apennines by means of clay mineralogy

ALDEGA, LUCA
01/01/2005

Abstract

This work is focused on the reconstruction of burial and thermal history of folded and thrust sedimentary successions that range in alteration intensity from diagenesis to very low-grade metamorphism. The aim is to show the potential of clay mineralogy analysis as a tool for understanding the structural framework and the Neogene-Quaternary evolution of the Apennines fold-and-thrust belt and reconstructing the volume of rocks that nowadays are partially or totally eroded (chap. I). Expandability, ‘crystallinity’ and illite crystallite thickness measurements and XRD quantitative analyses have been performed on different grain-size fractions and on the whole-rock samples of shales, clay- and silt-rich lithologies and fine-grained sandstones (chap. II). A new X-ray diffraction method to distinguish diagenetic and detrital illite by using a combined analysis of crystal-size distributions and illite polytypes quantification in siliciclastic sediments has been developed (chaps. II and III). The unmixing method allows to calculate the proportion of illite polytypes, and, therefore, the proportion of detrital illite, from crystallite thickness measurements. Estimating the detrital and diagenetic illite amounts allows to assess quantitative thermal data reliability. These data are converted to paleotemperatures and used for constraining burial histories. Clay mineralogy reaction progress thermal indicators have been integrated and correlated with inorganic and organic thermal parameters coming from other independent methodologies (organic matter maturity, fluid inclusions and apatite fission tracks; chaps. II, III, IV and V). This approach shows the importance of calibration and integration among these different methods. This would shorten the limits on the applicability of each method in order to better define the pattern of tectonic loads and the time-space evolution of an orogen where tectonic exhumation processes occurred at shallow crustal levels. This has been achieved also through computer-aided thermo-structural modelling. To define the thermal evolution and the geodynamical meaning of some sedimentary successions involved in the orogenic wedge, we chose three different areas as case studies: the Modena-Bologna area (chap. III) in the inner zone of the Northern Apennines fold-and-thrust belt; the Lucania area (chap. IV) in the axial zone of the Southern Apennines fold-and-thrust belt; the Nebrodi Mts.-Iblei Mts. section (chap. V) in the Eastern Sicily fold-and-thrust belt. In synthesis, the interpretation of glycolated and air-dried X-ray diffraction patterns highlights a trend of increasing thermal maturity from the younger to the older lithostratigraphic unit within the single tectonic unit; the same is valid from the upper to the lower tectonic unit along the chosen sections through the Apenninic-Maghrebian orogen. The illitic content in the illite/smectite mixed layers and the Reichweite parameter increase as a function of depth. Generally, data from fine-grained sandstones and silt-rich lithologies correlate to more pronounced level of maturation when compared to those from organic matter analysis. Illite crystallite thickness measurements (available for the Cervarola unit) display an increase of the crystal size as a function of burial. It is shown that this increase in thickness is related to an increase in the 2M1 component in the sediments, and that this component does not participate in the mixed layering. Illite ‘crystallinity’ measurements expressed as Kübler index (available for the Lagonegro succession) show the presence of a detrital 10-Å phase of phengite-like composition in the 2-16 µm grain-size fraction that records a situation inherited from the past, not directly related to the burial history. Only data from <2 μm slides suggest a temperature range comparable to that calculated by illite/smectite mixed layers. Northern Apennines fold-and-thrust belt (Modena-Bologna area): a horizontal decreasing maturity trend from the inner (Mt. La Nuda Thrust sheet) to the outer (Pennola Thrust sheet) thrust sheet made up of Granaglione Sandstones from 1.54% to 1.35% (Ro%) and 90% to 80% (%I in illite-smectite mixed layers) and an increase of thermal maturity from the younger to the older sediments in the studied successions has been recognized. This allowed the reconstruction of the Cervarola and Granaglione Sandstones’ maximum burial due to the emplacement of the Modino and Ligurian Units and the definition of the Corno alle Scale thrust geometry. Southern Apennines fold-and-thrust belt (Lucania area): a general trend of increasing thermal maturity from immature-early mature stages to late diagenesis conditions, moving from the upper (Apenninic carbonate Platform derived) to the lower (Mesozoic Lagonegro basin derived) tectonic units respectively has been recognized. This trend has been interpreted as caused by different amounts and timing of tectonic loadings and subsequent erosion and/or exhumation. In addition, slight differences in thermal maturity have been detected along the strike of the chain and related to changes in amounts of tectonic burial and erosion/exhumation due to the lack of cylindricity of contractional structures. Eastern Sicily fold-and-thrust belt (Nebrodi Mts.-Iblei Mts. section): A tentative correlation between organic and inorganic thermal indicators has been attempted and allowed the characterization of the different tectonic units in their specific geodynamic setting. Moreover, the burial and thermal evolution of the Mt. Judica Unit has been unravelled. The Mt. Judica Unit thermal evolution has been acquired before the late Miocene-early Pliocene deformation phase that caused its internal thrust stacking. Calculated maximum temperatures are in the range of 100-125 °C. Results obtained from a few hundreds XRD tracings allowed the development of one-dimensional thermal and structural models and pointed out that the estimated total thickness of the analyzed successions was not enough to justify the high maximum temperatures experienced as caused by pure sedimentary burial. An excess load has to be inferred in order to justify the calculated burial depths. Based on geological literature and interpretations, this excess load generally has been identified in a tectonic loading ranging from 3.5 to 5.0 Km in the Northern Apennines, from 2.0 to 5.0 Km in the Southern Apennines, and of 3.0 Km above the Mt. Judica succession. This research contributes to the reconstruction of the geometries and kinematics of the main structural units forming the Apennines fold-and-thrust belt. It also shares in the implications for palaeogeographic reconstructions, providing independent thermal and thermo-cronological constraints to the existing geodynamic models.
2005
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/387357
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact