We present a reciprocal space analytical method to cut off the long range interactions in supercell calculations for systems that are infinite and periodic in one or two dimensions, generalizing previous work to treat finite systems. The proposed cutoffs are functions in Fourier space, that are used as a multiplicative factor to screen the bare Coulomb interaction. The functions are analytic everywhere except in a subdomain of the Fourier space that depends on the periodic dimensionality. We show that the divergences that lead to the nonanalytical behavior can be exactly canceled when both the ionic and the Hartree potential are properly screened. This technique is exact, fast, and very easy to implement in already existing supercell codes. To illustrate the performance of the scheme, we apply it to the case of the Coulomb interaction in systems with reduced periodicity (as one-dimensional chains and layers). For these test cases, we address the impact of the cutoff on different relevant quantities for ground and excited state properties, namely: the convergence of the ground state properties, the static polarizability of the system, the quasiparticle corrections in the GW scheme, and the binding energy of the excitonic states in the Bethe-Salpeter equation. The results are very promising and easy to implement in all available first-principles codes.

Exact Coulomb cutoff technique for supercell calculations / Carlo, Rozzi; Varsano, Daniele; Andrea, Marini; Gross, Eberhard; Angel, Rubio. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - STAMPA. - 73:20(2006), p. 205119. [10.1103/physrevb.73.205119]

Exact Coulomb cutoff technique for supercell calculations

VARSANO, DANIELE;
2006

Abstract

We present a reciprocal space analytical method to cut off the long range interactions in supercell calculations for systems that are infinite and periodic in one or two dimensions, generalizing previous work to treat finite systems. The proposed cutoffs are functions in Fourier space, that are used as a multiplicative factor to screen the bare Coulomb interaction. The functions are analytic everywhere except in a subdomain of the Fourier space that depends on the periodic dimensionality. We show that the divergences that lead to the nonanalytical behavior can be exactly canceled when both the ionic and the Hartree potential are properly screened. This technique is exact, fast, and very easy to implement in already existing supercell codes. To illustrate the performance of the scheme, we apply it to the case of the Coulomb interaction in systems with reduced periodicity (as one-dimensional chains and layers). For these test cases, we address the impact of the cutoff on different relevant quantities for ground and excited state properties, namely: the convergence of the ground state properties, the static polarizability of the system, the quasiparticle corrections in the GW scheme, and the binding energy of the excitonic states in the Bethe-Salpeter equation. The results are very promising and easy to implement in all available first-principles codes.
2006
01 Pubblicazione su rivista::01a Articolo in rivista
Exact Coulomb cutoff technique for supercell calculations / Carlo, Rozzi; Varsano, Daniele; Andrea, Marini; Gross, Eberhard; Angel, Rubio. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - STAMPA. - 73:20(2006), p. 205119. [10.1103/physrevb.73.205119]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/386407
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 374
  • ???jsp.display-item.citation.isi??? 367
social impact