In this paper we introduce a generalized class of filtered Lyapunov functions, which are Lyapunov functions with time-varying parameters satisfying certain differential equations. Filtered Lyapunov functions have the same stability and robustness properties of Lyapunov functions. On the other hand, filtered Lyapunov functions can be easily handled to construct composite filtered Lyapunov functions for cascaded systems. Tools for the design of composite filtered Lyapunov functions are given and used to construct globally stabilizing dynamic feedback laws for block-feedforward systems with stabilizable linear approximation.
Filtered Lyapunov functions and the stabilization of block feedforward systems / Battilotti, Stefano. - STAMPA. - 44:1(2011), pp. 3415-3420. (Intervento presentato al convegno 18th IFAC World Congress tenutosi a Milano; Italy nel 28 Agosto - 31 Agosto) [10.3182/20110828-6-it-1002.00643].
Filtered Lyapunov functions and the stabilization of block feedforward systems
BATTILOTTI, Stefano
2011
Abstract
In this paper we introduce a generalized class of filtered Lyapunov functions, which are Lyapunov functions with time-varying parameters satisfying certain differential equations. Filtered Lyapunov functions have the same stability and robustness properties of Lyapunov functions. On the other hand, filtered Lyapunov functions can be easily handled to construct composite filtered Lyapunov functions for cascaded systems. Tools for the design of composite filtered Lyapunov functions are given and used to construct globally stabilizing dynamic feedback laws for block-feedforward systems with stabilizable linear approximation.File | Dimensione | Formato | |
---|---|---|---|
Battilotti_Filtered-Lyapunov-functions_2011.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
367.29 kB
Formato
Adobe PDF
|
367.29 kB | Adobe PDF | Contatta l'autore |
VE_2011_11573-384440.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
367.29 kB
Formato
Adobe PDF
|
367.29 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.