The exactly soluble Luttinger model can also be analyzed from the point of view of the renormalization group. A perturbation theory of the beta function of the model is derived. We argue that the main terms of the beta function vanish identically if the anomalous dimension is properly treated and if suitable properties of the exact solution are taken into account. Our treatment is purely perturbative and we do not discuss the problems of convergence of the formal series defining the beta function, it has recently been established, however, that the series defining it is convergent.

Renormalization group and the Fermi surface in the Luttinger model / G., Benfatto; Gallavotti, Giovanni; V., Mastropietro. - In: PHYSICAL REVIEW. B, CONDENSED MATTER. - ISSN 0163-1829. - 45:(1992), pp. 5468-5480. [10.1103/PhysRevB.45.5468]

Renormalization group and the Fermi surface in the Luttinger model

GALLAVOTTI, Giovanni;V. Mastropietro
1992

Abstract

The exactly soluble Luttinger model can also be analyzed from the point of view of the renormalization group. A perturbation theory of the beta function of the model is derived. We argue that the main terms of the beta function vanish identically if the anomalous dimension is properly treated and if suitable properties of the exact solution are taken into account. Our treatment is purely perturbative and we do not discuss the problems of convergence of the formal series defining the beta function, it has recently been established, however, that the series defining it is convergent.
1992
Luttinger model; renormalization group; Vanishing Beta function; anomalous dimension; Perturbation expansion
01 Pubblicazione su rivista::01a Articolo in rivista
Renormalization group and the Fermi surface in the Luttinger model / G., Benfatto; Gallavotti, Giovanni; V., Mastropietro. - In: PHYSICAL REVIEW. B, CONDENSED MATTER. - ISSN 0163-1829. - 45:(1992), pp. 5468-5480. [10.1103/PhysRevB.45.5468]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/383041
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact