The structure (A,r), with A an involutive algebra which is an inductive union of an increasing family of C* algebras with unity and r a positive normalized state on it, arises in Statistical mechanics. We investigate properties of operators which generate a dynamical evolution on the algebras in the case of classical mechanics disccussing the theory and showing that it can be viewed as the limit as h->0 of the corresponding theory for the quantum statistical mechanics (which is based on the Tomita-Takesaki theory).

Classical KMS condition and Tomita--Takesaki theory / Gallavotti, Giovanni. - In: ASTÉRISQUE. - ISSN 0303-1179. - STAMPA. - 40:(1976), pp. 89-94.

Classical KMS condition and Tomita--Takesaki theory

GALLAVOTTI, Giovanni
1976

Abstract

The structure (A,r), with A an involutive algebra which is an inductive union of an increasing family of C* algebras with unity and r a positive normalized state on it, arises in Statistical mechanics. We investigate properties of operators which generate a dynamical evolution on the algebras in the case of classical mechanics disccussing the theory and showing that it can be viewed as the limit as h->0 of the corresponding theory for the quantum statistical mechanics (which is based on the Tomita-Takesaki theory).
1976
KMS condition; Tomita-Takesaki theory; Operatore di Liouville; Gibbs states; Equilibrium states
01 Pubblicazione su rivista::01a Articolo in rivista
Classical KMS condition and Tomita--Takesaki theory / Gallavotti, Giovanni. - In: ASTÉRISQUE. - ISSN 0303-1179. - STAMPA. - 40:(1976), pp. 89-94.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/382837
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact