We prove that any stationary state describing an infinite classical system which is "stable" under local perturbations (and possesses some strong time clustering properties) must satisfy the "classical" KMS condition. (This in turn implies, quite generally, that it is a Gibbs state.) Similar results have been proven previously for quantum systems by Haag et al. and for finite classical systems by Lebowitz et al.

Stability and equilibrium states of infinite classical systems / Michael, Aizenman; Gallavotti, Giovanni; Sheldon, Goldstein; Joel L., Lebowitz. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 48:1(1976), pp. 1-14. [10.1007/bf01609407]

Stability and equilibrium states of infinite classical systems

GALLAVOTTI, Giovanni;
1976

Abstract

We prove that any stationary state describing an infinite classical system which is "stable" under local perturbations (and possesses some strong time clustering properties) must satisfy the "classical" KMS condition. (This in turn implies, quite generally, that it is a Gibbs state.) Similar results have been proven previously for quantum systems by Haag et al. and for finite classical systems by Lebowitz et al.
1976
gibbs states; kms
01 Pubblicazione su rivista::01a Articolo in rivista
Stability and equilibrium states of infinite classical systems / Michael, Aizenman; Gallavotti, Giovanni; Sheldon, Goldstein; Joel L., Lebowitz. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 48:1(1976), pp. 1-14. [10.1007/bf01609407]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/382522
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? ND
social impact