Hypertrophic cardiomyopathy (HCM) is a genetic disorder characterized by cardiac hypertrophy caused by mutations in sarcomere protein genes. MYBPC3 mutations are reported as a frequent cause of HCM. We aimed to identify the gene mutation underlying HCM in an Italian patient and his family composed of 13 relatives. Mutation screening of 658 known mutations was performed using a rapid and efficient mutation detection system based on semiautomated MALDI-TOF mass spectrometry using the Sequenom MassArray System and iPLEX Gold genotyping chemistry. Subsequently, direct sequencing of the coding exons and flanking intronic regions was performed for the most suitable HCM genes (MYBPC3, MYH7, TNNT2, TNNI3, and TPM1) in the index patient. We found a novel MYBPC3 gene mutation: G13999T (Gln689His). No other sarcomere gene mutation was found in this family. This genetic variant, which changes the last amino acid of MYBPC3 exon 21, affects a highly conserved residue. Furthermore, the Gln689His does not appear in public databases and has never been described as a polymorphism. The potential pathogenic role of this novel mutation was underlined by its absence in a sample of healthy subjects (n = 122) from the general Italian population. In summary, a novel MYBPC3 gene mutation has been identified in a patient affected by HCM, whereas it was absent in 244 reference alleles.
Identification of a novel MYBPC3 gene variant in a patient with hypertrophic cardiomyopathy / Brion, M; Allegue, C; Gil, R; Blanco Verea, A; Carracedo, A; Pagannone, Erika; Evangelista, A; Di Castro, S; Marchitti, S; Stanzione, R; Volpe, Massimo; Rubattu, Speranza Donatella. - In: ANNALS OF CLINICAL AND LABORATORY SCIENCE. - ISSN 0091-7370. - 40:(2010), pp. 285-290.
Identification of a novel MYBPC3 gene variant in a patient with hypertrophic cardiomyopathy.
PAGANNONE, erika;VOLPE, Massimo;RUBATTU, Speranza Donatella
2010
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder characterized by cardiac hypertrophy caused by mutations in sarcomere protein genes. MYBPC3 mutations are reported as a frequent cause of HCM. We aimed to identify the gene mutation underlying HCM in an Italian patient and his family composed of 13 relatives. Mutation screening of 658 known mutations was performed using a rapid and efficient mutation detection system based on semiautomated MALDI-TOF mass spectrometry using the Sequenom MassArray System and iPLEX Gold genotyping chemistry. Subsequently, direct sequencing of the coding exons and flanking intronic regions was performed for the most suitable HCM genes (MYBPC3, MYH7, TNNT2, TNNI3, and TPM1) in the index patient. We found a novel MYBPC3 gene mutation: G13999T (Gln689His). No other sarcomere gene mutation was found in this family. This genetic variant, which changes the last amino acid of MYBPC3 exon 21, affects a highly conserved residue. Furthermore, the Gln689His does not appear in public databases and has never been described as a polymorphism. The potential pathogenic role of this novel mutation was underlined by its absence in a sample of healthy subjects (n = 122) from the general Italian population. In summary, a novel MYBPC3 gene mutation has been identified in a patient affected by HCM, whereas it was absent in 244 reference alleles.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.