Turbulent internal flow in channel and pipe geometry with a diluted second phase of inertial particles is studied numerically. Direct numerical simulations (DNS) are performed at moderate Reynolds number (Re (tau) a parts per thousand aEuro parts per thousand 200) in pipe and two channels-a smaller one similar in size to previous studies and a 3 x 3-times larger one-and Eulerian statistics pertaining to the particle concentration are evaluated. This simulation box constitutes the largest domain used for particle-laden flows so far. The resulting two-point correlations of the particle concentration show that in the smaller channel the particles organize in thin, streamwise elongated patterns which are very regular and long. The spanwise spacing of these structures is 120 and 160 plus units for the channel and pipe, respectively. Only in the larger box, the streamwise extent is long enough for the particle streaks to decorrelate, thus allowing the particles to move more freely. The influence of the box size on the characteristics of the turbophoresis is clearly shown; a 10% increase of the near-wall correlation is observed for particles with Stokes number St (+) = 50. It is thus shown that the box dimensions are an important factor in correctly assessing the motion of inertial particles, and their relation to the underlying velocity field. In addition the binning size effects on the correlation statistics of particle concentration are exploited. In particular the spanwise correlation peak values appear very sensitive to the adopted binning size, although the position of these peaks is found almost independent. Hence to allow a significant comparison between data of different configurations it is necessary to adopt the same binning spacing in inner variable.

Large Scale Accumulation Patterns of Inertial Particles in Wall-Bounded Turbulent Flow / Sardina, Gaetano; Picano, Francesco; Philipp, Schlatter; Luca, Brandt; Casciola, Carlo Massimo. - In: FLOW TURBULENCE AND COMBUSTION. - ISSN 1386-6184. - STAMPA. - 86:3-4(2011), pp. 519-532. [10.1007/s10494-010-9322-z]

Large Scale Accumulation Patterns of Inertial Particles in Wall-Bounded Turbulent Flow

SARDINA, GAETANO;PICANO, Francesco;CASCIOLA, Carlo Massimo
2011

Abstract

Turbulent internal flow in channel and pipe geometry with a diluted second phase of inertial particles is studied numerically. Direct numerical simulations (DNS) are performed at moderate Reynolds number (Re (tau) a parts per thousand aEuro parts per thousand 200) in pipe and two channels-a smaller one similar in size to previous studies and a 3 x 3-times larger one-and Eulerian statistics pertaining to the particle concentration are evaluated. This simulation box constitutes the largest domain used for particle-laden flows so far. The resulting two-point correlations of the particle concentration show that in the smaller channel the particles organize in thin, streamwise elongated patterns which are very regular and long. The spanwise spacing of these structures is 120 and 160 plus units for the channel and pipe, respectively. Only in the larger box, the streamwise extent is long enough for the particle streaks to decorrelate, thus allowing the particles to move more freely. The influence of the box size on the characteristics of the turbophoresis is clearly shown; a 10% increase of the near-wall correlation is observed for particles with Stokes number St (+) = 50. It is thus shown that the box dimensions are an important factor in correctly assessing the motion of inertial particles, and their relation to the underlying velocity field. In addition the binning size effects on the correlation statistics of particle concentration are exploited. In particular the spanwise correlation peak values appear very sensitive to the adopted binning size, although the position of these peaks is found almost independent. Hence to allow a significant comparison between data of different configurations it is necessary to adopt the same binning spacing in inner variable.
2011
dns; inertial particles; particle laden flows; turbophoresis; turbulence; wall bounded flows
01 Pubblicazione su rivista::01a Articolo in rivista
Large Scale Accumulation Patterns of Inertial Particles in Wall-Bounded Turbulent Flow / Sardina, Gaetano; Picano, Francesco; Philipp, Schlatter; Luca, Brandt; Casciola, Carlo Massimo. - In: FLOW TURBULENCE AND COMBUSTION. - ISSN 1386-6184. - STAMPA. - 86:3-4(2011), pp. 519-532. [10.1007/s10494-010-9322-z]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/380970
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 31
social impact