A geometrically exact approach is employed to formulate the equations of motion of thin multi-layered isotropic and laminated composite plates subject to excitations that cause large strains, displacements, and rotations. The linearization of the obtained semi-intrinsic theory leads to the Mindlin-Reissner theory while an ad hoc truncated kinematic approximation delivers, as a by-product, the Foppl-von Karman theory of plates. An experimental validation is sought for fully clamped plates which are either of the isotropic single-layered type or of the multi-layered laminated composite type. To this end, nonlinear equilibrium paths are constructed both theoretically and experimentally when the plates are subject to a quasi-statically increasing central point load. The comparisons between the experimentally obtained results and those furnished by the geometrically exact theory as well as by the Foppl-von Karman (FVK) theory show the high accuracy of the proposed nonlinear theory while the FVK theory becomes increasingly inaccurate at deflection amplitudes of the order of the plates thickness. (C) 2011 Elsevier Ltd. All rights reserved.
A geometrically exact formulation for thin multi-layered laminated composite plates: theory and experiment / Lacarbonara, Walter; Michele, Pasquali. - In: COMPOSITE STRUCTURES. - ISSN 0263-8223. - STAMPA. - 93:7(2011), pp. 1649-1663. [10.1016/j.compstruct.2010.12.005]
A geometrically exact formulation for thin multi-layered laminated composite plates: theory and experiment
LACARBONARA, Walter;PASQUALI, MICHELE
2011
Abstract
A geometrically exact approach is employed to formulate the equations of motion of thin multi-layered isotropic and laminated composite plates subject to excitations that cause large strains, displacements, and rotations. The linearization of the obtained semi-intrinsic theory leads to the Mindlin-Reissner theory while an ad hoc truncated kinematic approximation delivers, as a by-product, the Foppl-von Karman theory of plates. An experimental validation is sought for fully clamped plates which are either of the isotropic single-layered type or of the multi-layered laminated composite type. To this end, nonlinear equilibrium paths are constructed both theoretically and experimentally when the plates are subject to a quasi-statically increasing central point load. The comparisons between the experimentally obtained results and those furnished by the geometrically exact theory as well as by the Foppl-von Karman (FVK) theory show the high accuracy of the proposed nonlinear theory while the FVK theory becomes increasingly inaccurate at deflection amplitudes of the order of the plates thickness. (C) 2011 Elsevier Ltd. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.