Sulfite, produced for instance during amino acid metabolism, is a very reactive and toxic compound. Various detoxification mechanisms exist, but sulfite oxidoreductases (SORs) are one of the major actors in sulfite remediation in bacteria and animals. Here we describe the existence of an operon in the extreme thermophilic bacterium Thermus thermophilus HB8 encoding both a SOR and a diheme c-type cytochrome. The in vitro analysis clearly showed that the newly identified cytochrome c₅₅₀ acts as an acceptor of the electrons generated by the SOR enzyme during the oxidation of sulfite. The electrons are then rapidly shuttled via cytochrome c₅₅₂ to the terminal ba₃- and caa₃-type oxidases, thereby unveiling a novel electron transfer pathway, linking sulfite oxidation to oxygen reduction in T. thermophilus: sulfite → SOR(HB8) → cytochrome c₅₅₀ → cytochrome c₅₅₂ → ba₃ oxidase/caa₃ oxidase → O₂. The description of the complete pathway reveals that electrons generated during sulfite oxidation by the SOR are funneled into the respiratory chain, participating in the energy production of T. thermophilus.

A sulfite respiration pathway from Thermus thermophilus and the key role of a newly identified cytochrome c550 / Robin, S; Arese, Marzia; Forte, Elena; Sarti, Paolo; Giuffre', Alessandro; Soulimane, T.. - In: JOURNAL OF BACTERIOLOGY. - ISSN 0021-9193. - 193:(2011), pp. 3988-3997. [10.1128/JB.05186-11]

A sulfite respiration pathway from Thermus thermophilus and the key role of a newly identified cytochrome c550

ARESE, Marzia;FORTE, Elena;SARTI, Paolo;GIUFFRE', ALESSANDRO;
2011

Abstract

Sulfite, produced for instance during amino acid metabolism, is a very reactive and toxic compound. Various detoxification mechanisms exist, but sulfite oxidoreductases (SORs) are one of the major actors in sulfite remediation in bacteria and animals. Here we describe the existence of an operon in the extreme thermophilic bacterium Thermus thermophilus HB8 encoding both a SOR and a diheme c-type cytochrome. The in vitro analysis clearly showed that the newly identified cytochrome c₅₅₀ acts as an acceptor of the electrons generated by the SOR enzyme during the oxidation of sulfite. The electrons are then rapidly shuttled via cytochrome c₅₅₂ to the terminal ba₃- and caa₃-type oxidases, thereby unveiling a novel electron transfer pathway, linking sulfite oxidation to oxygen reduction in T. thermophilus: sulfite → SOR(HB8) → cytochrome c₅₅₀ → cytochrome c₅₅₂ → ba₃ oxidase/caa₃ oxidase → O₂. The description of the complete pathway reveals that electrons generated during sulfite oxidation by the SOR are funneled into the respiratory chain, participating in the energy production of T. thermophilus.
2011
01 Pubblicazione su rivista::01a Articolo in rivista
A sulfite respiration pathway from Thermus thermophilus and the key role of a newly identified cytochrome c550 / Robin, S; Arese, Marzia; Forte, Elena; Sarti, Paolo; Giuffre', Alessandro; Soulimane, T.. - In: JOURNAL OF BACTERIOLOGY. - ISSN 0021-9193. - 193:(2011), pp. 3988-3997. [10.1128/JB.05186-11]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/379713
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact