Power Line Communication (PLC) systems are currently envisioned as a possible solution for distributing multimedia contents and allowing Internet access with a capillary (already built) network without demanding further infrastructure. The real challenge for PLCs consists in providing connectivity where Public Switch Telephone Network (PSTN)-based Internet Access and/or Wi-Fi/WiMAX seem to be unable to solve the problem of Digital Divide. In this paper we introduce a new metric, i.e. the goodput, to balance transmission rate and bit error rate (BER) in resource allocation issues for Power Line Communication systems. In detail, we state the well-known integer bit-loading problem as a goodput maximization with constraints on the power consumption and the maximum decoding time. The use of Trellis Coded Modulation (TCM) allows to pursue the goodput maximization weighing error probability and transmission rate which would have otherwise been in trade-off. Numerical results are presented to stress how our solution improves system performances, both in ideal conditions and with additional impairments such as crosstalk and impulsive noise, with respect to the conventional Maximum Rate (MR) and Minimum BER (MB) approaches and to validate the suitability of TCMs in comparison with higher complexity codes.

Power-Constrained Physical-Layer Goodput Maximization for Broadband Power Line Communication Links / Biagi, Mauro; Valentina, Polli; Tatiana, Patriarca. - In: IEEE TRANSACTIONS ON COMMUNICATIONS. - ISSN 0090-6778. - STAMPA. - 59:3(2011), pp. 695-700. [10.1109/tcomm.2011.122110.090426]

Power-Constrained Physical-Layer Goodput Maximization for Broadband Power Line Communication Links

BIAGI, MAURO;
2011

Abstract

Power Line Communication (PLC) systems are currently envisioned as a possible solution for distributing multimedia contents and allowing Internet access with a capillary (already built) network without demanding further infrastructure. The real challenge for PLCs consists in providing connectivity where Public Switch Telephone Network (PSTN)-based Internet Access and/or Wi-Fi/WiMAX seem to be unable to solve the problem of Digital Divide. In this paper we introduce a new metric, i.e. the goodput, to balance transmission rate and bit error rate (BER) in resource allocation issues for Power Line Communication systems. In detail, we state the well-known integer bit-loading problem as a goodput maximization with constraints on the power consumption and the maximum decoding time. The use of Trellis Coded Modulation (TCM) allows to pursue the goodput maximization weighing error probability and transmission rate which would have otherwise been in trade-off. Numerical results are presented to stress how our solution improves system performances, both in ideal conditions and with additional impairments such as crosstalk and impulsive noise, with respect to the conventional Maximum Rate (MR) and Minimum BER (MB) approaches and to validate the suitability of TCMs in comparison with higher complexity codes.
2011
power line communications; physical layer goodput; bit error rate; trellis coded modulation
01 Pubblicazione su rivista::01a Articolo in rivista
Power-Constrained Physical-Layer Goodput Maximization for Broadband Power Line Communication Links / Biagi, Mauro; Valentina, Polli; Tatiana, Patriarca. - In: IEEE TRANSACTIONS ON COMMUNICATIONS. - ISSN 0090-6778. - STAMPA. - 59:3(2011), pp. 695-700. [10.1109/tcomm.2011.122110.090426]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/377794
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
social impact