A weighted Euclidean distance model for analyzing three-way dissimilarity data (stimuli by stimuli by subjects) for heterogeneous subjects is proposed. First, it is shown that INDSCAL may fail to identify a common space representative of the observed data structure in presence of heterogeneity. A new model that removes the rotational invariance of the classical multidimensional scaling problem and specifies K common homogeneous spaces is proposed. The model, called mixture INDSCAL in K classes, or briefly K-INDSCAL, still includes individual saliencies. However, the large number of parameters in K-INDSCAL may produce instability of the estimates and therefore a parsimonious model will also be discussed. The parameters of the model are estimated in a least-squares fitting context and an efficient coordinate descent algorithm is given. The usefulness of K-INDSCAL is demonstrated by both artificial and real data analyses.
The K-INDSCAL Model for Heterogeneous Three-Way Dissimilarity Data / Bocci, Laura; Vichi, Maurizio. - In: PSYCHOMETRIKA. - ISSN 0033-3123. - STAMPA. - 76:4(2011), pp. 691-714. [10.1007/s11336-011-9225-5]
The K-INDSCAL Model for Heterogeneous Three-Way Dissimilarity Data
BOCCI, Laura;VICHI, Maurizio
2011
Abstract
A weighted Euclidean distance model for analyzing three-way dissimilarity data (stimuli by stimuli by subjects) for heterogeneous subjects is proposed. First, it is shown that INDSCAL may fail to identify a common space representative of the observed data structure in presence of heterogeneity. A new model that removes the rotational invariance of the classical multidimensional scaling problem and specifies K common homogeneous spaces is proposed. The model, called mixture INDSCAL in K classes, or briefly K-INDSCAL, still includes individual saliencies. However, the large number of parameters in K-INDSCAL may produce instability of the estimates and therefore a parsimonious model will also be discussed. The parameters of the model are estimated in a least-squares fitting context and an efficient coordinate descent algorithm is given. The usefulness of K-INDSCAL is demonstrated by both artificial and real data analyses.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.