In this letter, we address the problem of estimating a parameter acting as a scale factor on the observations probability density function (pdf), i.e. a scale parameter. Histogram based Maximum Likelihood (ML) estimation of a scale parameter requires the evaluation of a discrete scale correlation. We show how ML estimation can be implemented by means of a computationally efficient Discrete Fourier Transform based procedure, when geometric histogram sampling is adopted. As a case study, we analyze a gain estimator for general QAM constellations. Simulation results and theoretical performance analysis show that the presented ML estimator outperforms selected state of the art estimators, approaching the Cramér-Rao Lower Bound (CRLB) for a wide range of SNR.
Fast maximum likelihood scale parameter estimation from histogram measurements / Colonnese, Stefania; Rinauro, Stefano; Scarano, Gaetano. - In: IEEE SIGNAL PROCESSING LETTERS. - ISSN 1070-9908. - STAMPA. - 18:8(2011), pp. 474-477. [10.1109/lsp.2011.2159787]
Fast maximum likelihood scale parameter estimation from histogram measurements
COLONNESE, Stefania;RINAURO, STEFANO;SCARANO, Gaetano
2011
Abstract
In this letter, we address the problem of estimating a parameter acting as a scale factor on the observations probability density function (pdf), i.e. a scale parameter. Histogram based Maximum Likelihood (ML) estimation of a scale parameter requires the evaluation of a discrete scale correlation. We show how ML estimation can be implemented by means of a computationally efficient Discrete Fourier Transform based procedure, when geometric histogram sampling is adopted. As a case study, we analyze a gain estimator for general QAM constellations. Simulation results and theoretical performance analysis show that the presented ML estimator outperforms selected state of the art estimators, approaching the Cramér-Rao Lower Bound (CRLB) for a wide range of SNR.File | Dimensione | Formato | |
---|---|---|---|
Colonese_Fast-maximum_2011.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
998.45 kB
Formato
Adobe PDF
|
998.45 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.