In this contribution we implement a suitably adapted version of the finite differences technique to solve the field equations for a thin-walled beam, as obtained by means of a direct one-dimensional model. This technique lets us find non trivial equilibrium paths and study their stability under both conservative and non conservative actions. Some results are presented and discussed.

A numerical approach for the stability analysis of thin-walled beams / Brunetti, Matteo; Lofrano, Egidio; Paolone, Achille; Ruta, Giuseppe. - STAMPA. - (2011), pp. ---. ( 7th European Nonlinear Dynamics Conference ENOC 2011 Roma, Italia ).

A numerical approach for the stability analysis of thin-walled beams

BRUNETTI, MATTEO;LOFRANO, EGIDIO;PAOLONE, ACHILLE;RUTA, Giuseppe
2011

Abstract

In this contribution we implement a suitably adapted version of the finite differences technique to solve the field equations for a thin-walled beam, as obtained by means of a direct one-dimensional model. This technique lets us find non trivial equilibrium paths and study their stability under both conservative and non conservative actions. Some results are presented and discussed.
2011
7th European Nonlinear Dynamics Conference ENOC 2011
04 Pubblicazione in atti di convegno::04d Abstract in atti di convegno
A numerical approach for the stability analysis of thin-walled beams / Brunetti, Matteo; Lofrano, Egidio; Paolone, Achille; Ruta, Giuseppe. - STAMPA. - (2011), pp. ---. ( 7th European Nonlinear Dynamics Conference ENOC 2011 Roma, Italia ).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/376557
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact