Abstract. This paper is devoted to determining the scalar relaxation kernel a in a second-order (in time) integrodifferential equation related to a Banach space when an additional measurement involving the state function is available. A result concerning global existence and uniqueness is proved. The novelty of this paper consists in looking for the kernel a in the Banach space BV (0, T), consisting of functions of bounded variations, instead of the space W1,1(0, T) used up to now to identify a. An application is given, in the framework of L2-spaces, to the case of hy- perbolic second-order integrodifferential equations endowed with initial and Dirichlet boundary conditions.

Identifying a BV-kernel in a hyperbolic integrodifferential equation / A., Lorenzi; Sinestrari, Eugenio. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - STAMPA. - 21:4(2008), pp. 1199-1219. [10.3934/dcds.2008.21.1199]

Identifying a BV-kernel in a hyperbolic integrodifferential equation

SINESTRARI, Eugenio
2008

Abstract

Abstract. This paper is devoted to determining the scalar relaxation kernel a in a second-order (in time) integrodifferential equation related to a Banach space when an additional measurement involving the state function is available. A result concerning global existence and uniqueness is proved. The novelty of this paper consists in looking for the kernel a in the Banach space BV (0, T), consisting of functions of bounded variations, instead of the space W1,1(0, T) used up to now to identify a. An application is given, in the framework of L2-spaces, to the case of hy- perbolic second-order integrodifferential equations endowed with initial and Dirichlet boundary conditions.
2008
01 Pubblicazione su rivista::01a Articolo in rivista
Identifying a BV-kernel in a hyperbolic integrodifferential equation / A., Lorenzi; Sinestrari, Eugenio. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - STAMPA. - 21:4(2008), pp. 1199-1219. [10.3934/dcds.2008.21.1199]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/37165
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact