This paper is devoted to the study of the integrodifferential equation $$u'(t) = Au(t) +\int_0^t a(t - s)A_1u(s)ds + f(t), t\geq 0, $$ where $A$ is a Hille-Yosida operator in a Banach space $X$, $A_1 \in \mathcal {L}(D(A);X)$ and $a$ has bounded variation. Existence, uniqueness and estimates of strict and weak solutions are proved by extrapolation methods and the Miller scheme. Applications are given to the Cauchy-Dirichlet problem for the integrodifferential wave equation $$ w_{tt}(t, x) = w_{xx}(t, x) +\int_0^ta(t -s)w_{xx}(s, x)ds + f(t, x), t\geq 0, x\in[0, l]. $$

An integrodifferential wave equation / Sinestrari, Eugenio. - In: ADVANCES IN DIFFERENTIAL EQUATIONS. - ISSN 1079-9389. - STAMPA. - 11:(2006), pp. 751-779.

An integrodifferential wave equation

SINESTRARI, Eugenio
2006

Abstract

This paper is devoted to the study of the integrodifferential equation $$u'(t) = Au(t) +\int_0^t a(t - s)A_1u(s)ds + f(t), t\geq 0, $$ where $A$ is a Hille-Yosida operator in a Banach space $X$, $A_1 \in \mathcal {L}(D(A);X)$ and $a$ has bounded variation. Existence, uniqueness and estimates of strict and weak solutions are proved by extrapolation methods and the Miller scheme. Applications are given to the Cauchy-Dirichlet problem for the integrodifferential wave equation $$ w_{tt}(t, x) = w_{xx}(t, x) +\int_0^ta(t -s)w_{xx}(s, x)ds + f(t, x), t\geq 0, x\in[0, l]. $$
2006
01 Pubblicazione su rivista::01a Articolo in rivista
An integrodifferential wave equation / Sinestrari, Eugenio. - In: ADVANCES IN DIFFERENTIAL EQUATIONS. - ISSN 1079-9389. - STAMPA. - 11:(2006), pp. 751-779.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/37164
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 4
social impact