Benders decomposition is a well-known procedure for solving a combinatorial optimization problem by defining it in terms of a master problem and a subproblem. Its effectiveness relies on the possibility of synthethising Benders cuts (or nogoods) that rule out not only one, but a large class of trial values for the master problem. In turns, this depends on the possibility of separating the subproblem into several subproblems, i.e., problems exhibiting strong intra-relationships and weak inter-relationships. The notion of separation is typically given informally, or relying on syntactical aspects. This paper formally addresses the notion of separability of the subproblem by giving a semantical definition and exploring it from the computational point of view. Several examples of separable problems are provided, including some proving that a semantical notion of separability is much more helpful than a syntactic one. We show that separability can be formally characterized as equivalence of logical formulae, and prove the undecidability of the problem of checking separability. © Springer-Verlag Berlin Heidelberg 2006.

On the separability of subproblems in Benders decompositions / Cadoli, Marco; Patrizi, Fabio. - 3990:(2006), pp. 74-88. (Intervento presentato al convegno 3rd International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR 2006 tenutosi a Cork; Ireland nel Aprile 2006) [10.1007/11757375_8].

On the separability of subproblems in Benders decompositions

CADOLI, Marco;PATRIZI, FABIO
2006

Abstract

Benders decomposition is a well-known procedure for solving a combinatorial optimization problem by defining it in terms of a master problem and a subproblem. Its effectiveness relies on the possibility of synthethising Benders cuts (or nogoods) that rule out not only one, but a large class of trial values for the master problem. In turns, this depends on the possibility of separating the subproblem into several subproblems, i.e., problems exhibiting strong intra-relationships and weak inter-relationships. The notion of separation is typically given informally, or relying on syntactical aspects. This paper formally addresses the notion of separability of the subproblem by giving a semantical definition and exploring it from the computational point of view. Several examples of separable problems are provided, including some proving that a semantical notion of separability is much more helpful than a syntactic one. We show that separability can be formally characterized as equivalence of logical formulae, and prove the undecidability of the problem of checking separability. © Springer-Verlag Berlin Heidelberg 2006.
2006
3rd International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR 2006
Benders decomposition; Combinatorial optimization problem; Notion of separation
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
On the separability of subproblems in Benders decompositions / Cadoli, Marco; Patrizi, Fabio. - 3990:(2006), pp. 74-88. (Intervento presentato al convegno 3rd International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR 2006 tenutosi a Cork; Ireland nel Aprile 2006) [10.1007/11757375_8].
File allegati a questo prodotto
File Dimensione Formato  
VE_2006_11573-367678.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 367.7 kB
Formato Adobe PDF
367.7 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/367678
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact