We examined the expression of metabotropic glutamate ( mGlu) receptors in species of fish that differ for their vulnerability to anoxic brain damage. Although expression of mGlu1a and mGlu5 receptors was similar in the brain of all species examined, expression of mGlu2/3 receptors was substantially higher in the brain of anoxia-tolerant species (i.e., the carp Carassius carassius and the goldfish Carassius auratus) than in the brain of species that are highly vulnerable to anoxic damage, such as the trouts Salmo trutta and Oncorhynchus mykiss. This difference was confirmed by measuring the mGlu2/3 receptor-mediated inhibition of forskolin-stimulated cAMP formation in slices prepared from the telencephalon of C. auratus and S. trutta. We exposed the goldfish C. auratus to water deprived of oxygen for 4 hr for the induction of hypoxic brain damage. Although the goldfish survived this treatment, the occurrence of apoptotic cell death could be demonstrated by terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling staining and by the assessment of caspase-3 activity in different brain region. The extent of cell death was highest in the medulla oblongata, followed by the optic tectum, cerebellum, and hypothalamus. No cell death was found in the telencephalon. This regional pattern of hypoxic damage was inversely related to the expression of mGlu2/3 receptors, which was lowest in the medulla oblongata and highest in the telencephalon. Treatment of the goldfish with the brain permeant mGlu2/3 receptor antagonist LY341495 ( 1 mg/kg, i.p.) amplified anoxic damage throughout the brain and enabled the induction of cell death by anoxia in the telencephalon. In contrast, treatment of the goldfish with the mGlu2/3 receptor agonist LY379268 (0.5 or 1 mg/kg, i.p.) was highly protective against anoxic brain damage. Finally, exposure to the antagonist LY341495 ( 0.5 muM) greatly amplified the release of glutamate induced by hypoxia in slices prepared from the medulla oblongata and the telencephalon of the goldfish. We conclude that expression of mGlu2/3 receptors provides a major defensive mechanism against brain damage in anoxia-tolerant species.

Group II metabotropic glutamate receptors regulate the vulnerability to hypoxic brain damage / Poli, A.; Beraudi, A.; Villani, L.; Storto, M.; Battaglia, G.; DI GIORGI GEREVINI, VALERIA DUSOLINA; Cappuccio, Irene; Andrea, Caricasole; D'Onofrio, M.; Nicoletti, Ferdinando. - In: THE JOURNAL OF NEUROSCIENCE. - ISSN 0270-6474. - 23:14(2003), pp. 6023-6029.

Group II metabotropic glutamate receptors regulate the vulnerability to hypoxic brain damage

G. Battaglia;DI GIORGI GEREVINI, VALERIA DUSOLINA;CAPPUCCIO, Irene;NICOLETTI, Ferdinando
2003

Abstract

We examined the expression of metabotropic glutamate ( mGlu) receptors in species of fish that differ for their vulnerability to anoxic brain damage. Although expression of mGlu1a and mGlu5 receptors was similar in the brain of all species examined, expression of mGlu2/3 receptors was substantially higher in the brain of anoxia-tolerant species (i.e., the carp Carassius carassius and the goldfish Carassius auratus) than in the brain of species that are highly vulnerable to anoxic damage, such as the trouts Salmo trutta and Oncorhynchus mykiss. This difference was confirmed by measuring the mGlu2/3 receptor-mediated inhibition of forskolin-stimulated cAMP formation in slices prepared from the telencephalon of C. auratus and S. trutta. We exposed the goldfish C. auratus to water deprived of oxygen for 4 hr for the induction of hypoxic brain damage. Although the goldfish survived this treatment, the occurrence of apoptotic cell death could be demonstrated by terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling staining and by the assessment of caspase-3 activity in different brain region. The extent of cell death was highest in the medulla oblongata, followed by the optic tectum, cerebellum, and hypothalamus. No cell death was found in the telencephalon. This regional pattern of hypoxic damage was inversely related to the expression of mGlu2/3 receptors, which was lowest in the medulla oblongata and highest in the telencephalon. Treatment of the goldfish with the brain permeant mGlu2/3 receptor antagonist LY341495 ( 1 mg/kg, i.p.) amplified anoxic damage throughout the brain and enabled the induction of cell death by anoxia in the telencephalon. In contrast, treatment of the goldfish with the mGlu2/3 receptor agonist LY379268 (0.5 or 1 mg/kg, i.p.) was highly protective against anoxic brain damage. Finally, exposure to the antagonist LY341495 ( 0.5 muM) greatly amplified the release of glutamate induced by hypoxia in slices prepared from the medulla oblongata and the telencephalon of the goldfish. We conclude that expression of mGlu2/3 receptors provides a major defensive mechanism against brain damage in anoxia-tolerant species.
2003
anoxia; apoptosis; glutamate release; goldfish; mglu receptors; neuroprotection
01 Pubblicazione su rivista::01a Articolo in rivista
Group II metabotropic glutamate receptors regulate the vulnerability to hypoxic brain damage / Poli, A.; Beraudi, A.; Villani, L.; Storto, M.; Battaglia, G.; DI GIORGI GEREVINI, VALERIA DUSOLINA; Cappuccio, Irene; Andrea, Caricasole; D'Onofrio, M.; Nicoletti, Ferdinando. - In: THE JOURNAL OF NEUROSCIENCE. - ISSN 0270-6474. - 23:14(2003), pp. 6023-6029.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/366774
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 35
social impact