We model a fault cross-cutting the brittle upper crust and the ductile lower crust. In the brittle layer the fault is assumed to have stick-slip behaviour, whereas the lower ductile crust is inferred to deform in a steady-state shear. Therefore, the brittle-ductile transition (BDT) separates two layers with different strain rates and structural styles. This contrasting behaviour determines a stress gradient at the BDT that is eventually dissipated during the earthquake. During the interseismic period, along a normal fault it should form a dilated hinge at and above the BDT. Conversely, an over-compressed volume should rather develop above a thrust plane at the BDT. On a normal fault the earthquake is associated with the coseismic closure of the dilated fractures generated in the stretched hangingwall during the interseismic period. In addition to the shear stress overcoming the friction of the fault, the brittle fault moves when the weight of the hangingwall exceeds the strength of the dilated band above the BUT. On a thrust fault, the seismic event is instead associated with the sudden dilation of the previously over-compressed volume in the hangingwall above the BDT, a mechanism requiring much more energy because it acts against gravity. In both cases, the deeper the BDT, the larger the involved volume, and the bigger the related magnitude. We tested two scenarios with two examples from L'Aquila 2009 (Italy) and Chi-Chi 1999 (Taiwan) events. GPS data, energy dissipation and strain rate analysis support these contrasting evolutions. Our model also predicts, consistently with data, that the interseismic strain rate is lower along the fault segment more prone to seismic activation. (C) 2010 Elsevier B.V. All rights reserved.

Role of the brittle-ductile transition on fault activation / Doglioni, Carlo; S., Barba; Carminati, Eugenio Ambrogio Maria; F., Riguzzi. - In: PHYSICS OF THE EARTH AND PLANETARY INTERIORS. - ISSN 0031-9201. - 184:3-4(2011), pp. 160-171. [10.1016/j.pepi.2010.11.005]

Role of the brittle-ductile transition on fault activation

DOGLIONI, Carlo;CARMINATI, Eugenio Ambrogio Maria;
2011

Abstract

We model a fault cross-cutting the brittle upper crust and the ductile lower crust. In the brittle layer the fault is assumed to have stick-slip behaviour, whereas the lower ductile crust is inferred to deform in a steady-state shear. Therefore, the brittle-ductile transition (BDT) separates two layers with different strain rates and structural styles. This contrasting behaviour determines a stress gradient at the BDT that is eventually dissipated during the earthquake. During the interseismic period, along a normal fault it should form a dilated hinge at and above the BDT. Conversely, an over-compressed volume should rather develop above a thrust plane at the BDT. On a normal fault the earthquake is associated with the coseismic closure of the dilated fractures generated in the stretched hangingwall during the interseismic period. In addition to the shear stress overcoming the friction of the fault, the brittle fault moves when the weight of the hangingwall exceeds the strength of the dilated band above the BUT. On a thrust fault, the seismic event is instead associated with the sudden dilation of the previously over-compressed volume in the hangingwall above the BDT, a mechanism requiring much more energy because it acts against gravity. In both cases, the deeper the BDT, the larger the involved volume, and the bigger the related magnitude. We tested two scenarios with two examples from L'Aquila 2009 (Italy) and Chi-Chi 1999 (Taiwan) events. GPS data, energy dissipation and strain rate analysis support these contrasting evolutions. Our model also predicts, consistently with data, that the interseismic strain rate is lower along the fault segment more prone to seismic activation. (C) 2010 Elsevier B.V. All rights reserved.
2011
thrust; l'aquila; italy; dilatancy; seismic cycle; brittle-ductile transition; chi-chi; taiwan; normal fault; earthquake
01 Pubblicazione su rivista::01a Articolo in rivista
Role of the brittle-ductile transition on fault activation / Doglioni, Carlo; S., Barba; Carminati, Eugenio Ambrogio Maria; F., Riguzzi. - In: PHYSICS OF THE EARTH AND PLANETARY INTERIORS. - ISSN 0031-9201. - 184:3-4(2011), pp. 160-171. [10.1016/j.pepi.2010.11.005]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/366228
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 86
social impact