OBJECTIVE: We evaluated the effects of two consecutive concussive injuries on brain energy metabolism and N-acetylaspartate (NAA) to investigate how the temporal interval between traumatic events influences overall injury severity. METHODS: Rats were injured to induce diffuse traumatic brain injury (TBI) (mild, 450 g/1 m; severe, 450 g/2 m). In two groups, two mild TBIs were delivered in 3- or 5-day intervals. Three additional animal groups were used: single mild TBI, single severe TBI, and sham. All animals were killed 48 hours postinjury. Adenosine 5'-triphosphate (ATP), adenosine diphosphate, and NAA concentrations were analyzed with high-performance liquid chromatography on deproteinized whole brain extracts. RESULTS: In control animals, the NAA concentration was 9.17 +/- 0.38 micromol/g wet weight, the ATP concentration was 2.25 +/- 0.21 micromol/g wet weight, and the ATP-to-adenosine diphosphate ratio was 9.38 +/- 1.23. These concentrations decreased to 6.68 +/- 1.12 micromol/g wet weight, 1.68 +/- 0.24 micromol/g wet weight, and 6.10 +/- 1.21 micromol/g wet weight, respectively, in rats that received two mild TBIs at a 5-day interval (P 0.01; not different from results in rats with single mild TBI). When a second TBI was delivered after 3 days, the NAA concentration was 3.86 +/- 0.53 micromol/g wet weight, the ATP concentration was 1.11 +/- 0.18 micromol/g wet weight, and the ATP-to-adenosine diphosphate ratio was 2.64 +/- 0.43 (P 0.001 versus both controls and 3-day interval; not different from rats receiving a single severe TBI). CONCLUSION: The biochemical modification severity in double TBI is dependent on the interval between traumatic events, which demonstrates the metabolic state of the vulnerable brain after mild TBI. These data support the hypothesis of the application of proton magnetic resonance spectroscopy to measure NAA as a possible tool to monitor the full recovery of brain metabolic functions in the clinical setting, particularly in sports medicine.

Hypothesis of the postconcussive vulnerable brain: experimental evidence of its metabolic occurrence / Vagnozzi, R; Signoretti, S; Tavazzi, B; Cimatti, Marco; Amorini, Am; Donzelli, S; Delfini, Roberto; Lazzarino, G.. - In: NEUROSURGERY. - ISSN 0148-396X. - STAMPA. - 57:(2005), pp. 164-171. [10.1227/01.NEU.0000163413.90259.85]

Hypothesis of the postconcussive vulnerable brain: experimental evidence of its metabolic occurrence

CIMATTI, Marco;DELFINI, Roberto;
2005

Abstract

OBJECTIVE: We evaluated the effects of two consecutive concussive injuries on brain energy metabolism and N-acetylaspartate (NAA) to investigate how the temporal interval between traumatic events influences overall injury severity. METHODS: Rats were injured to induce diffuse traumatic brain injury (TBI) (mild, 450 g/1 m; severe, 450 g/2 m). In two groups, two mild TBIs were delivered in 3- or 5-day intervals. Three additional animal groups were used: single mild TBI, single severe TBI, and sham. All animals were killed 48 hours postinjury. Adenosine 5'-triphosphate (ATP), adenosine diphosphate, and NAA concentrations were analyzed with high-performance liquid chromatography on deproteinized whole brain extracts. RESULTS: In control animals, the NAA concentration was 9.17 +/- 0.38 micromol/g wet weight, the ATP concentration was 2.25 +/- 0.21 micromol/g wet weight, and the ATP-to-adenosine diphosphate ratio was 9.38 +/- 1.23. These concentrations decreased to 6.68 +/- 1.12 micromol/g wet weight, 1.68 +/- 0.24 micromol/g wet weight, and 6.10 +/- 1.21 micromol/g wet weight, respectively, in rats that received two mild TBIs at a 5-day interval (P 0.01; not different from results in rats with single mild TBI). When a second TBI was delivered after 3 days, the NAA concentration was 3.86 +/- 0.53 micromol/g wet weight, the ATP concentration was 1.11 +/- 0.18 micromol/g wet weight, and the ATP-to-adenosine diphosphate ratio was 2.64 +/- 0.43 (P 0.001 versus both controls and 3-day interval; not different from rats receiving a single severe TBI). CONCLUSION: The biochemical modification severity in double TBI is dependent on the interval between traumatic events, which demonstrates the metabolic state of the vulnerable brain after mild TBI. These data support the hypothesis of the application of proton magnetic resonance spectroscopy to measure NAA as a possible tool to monitor the full recovery of brain metabolic functions in the clinical setting, particularly in sports medicine.
2005
01 Pubblicazione su rivista::01a Articolo in rivista
Hypothesis of the postconcussive vulnerable brain: experimental evidence of its metabolic occurrence / Vagnozzi, R; Signoretti, S; Tavazzi, B; Cimatti, Marco; Amorini, Am; Donzelli, S; Delfini, Roberto; Lazzarino, G.. - In: NEUROSURGERY. - ISSN 0148-396X. - STAMPA. - 57:(2005), pp. 164-171. [10.1227/01.NEU.0000163413.90259.85]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/365369
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 27
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 67
social impact