The adsorption of aromatic thiols on Cu and the SAM film stability in acidic solutions have been studied by XPS, contact angle and electrochemical techniques. Three short molecules, benzenethiol (BT), 2-naphthalenethiol (2-NT) and 4-acetamidothiophenol (4-AA), were selected as representatives of aromatic thiols to highlight the effect of aromatic rings and hydrophilic terminal groups on the copper protection. All the three molecules form stable S-Cu bonds as a consequence of their adsorption process on polycrystalline copper. Although none of them provides a full copper passivation, the adsorbed films persist without major degradation on Cu electrodes even after 12 h immersion in 0.5 M sulfuric acid. Comparing the freshly prepared adsorbed films, the larger 2-NT molecule provides a better Cu passivation, but the shorter BT molecule favours a higher surface coverage. The terminal groups of 4-AA are responsible for a higher Cu surface wettability in water, compared to that with SAMs of the other molecules, and allow for an easier charge-transfer to the electrolyte and for a higher electrochemical capacitance. After long enough ageing, however, the 4-AA-based molecular films are able to self-organize and to provide a steadily improving copper passivation. Adlayers of the BT and 2-NT molecules, on the contrary, over a long time tend to protect less and less the Cu substrate, probably because of progressive electrolyte infiltration.

A multi-technique approach to the analysis of SAMs of aromatic thiols on copper / Caprioli, Fabrizio; Marco, Beccari; Martinelli, Andrea; DI CASTRO, Valeria; Decker, Franco. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - STAMPA. - 11:48(2009), pp. 11624-11630. [10.1039/b911834a]

A multi-technique approach to the analysis of SAMs of aromatic thiols on copper

CAPRIOLI, FABRIZIO;MARTINELLI, Andrea;DI CASTRO, Valeria;DECKER, Franco
2009

Abstract

The adsorption of aromatic thiols on Cu and the SAM film stability in acidic solutions have been studied by XPS, contact angle and electrochemical techniques. Three short molecules, benzenethiol (BT), 2-naphthalenethiol (2-NT) and 4-acetamidothiophenol (4-AA), were selected as representatives of aromatic thiols to highlight the effect of aromatic rings and hydrophilic terminal groups on the copper protection. All the three molecules form stable S-Cu bonds as a consequence of their adsorption process on polycrystalline copper. Although none of them provides a full copper passivation, the adsorbed films persist without major degradation on Cu electrodes even after 12 h immersion in 0.5 M sulfuric acid. Comparing the freshly prepared adsorbed films, the larger 2-NT molecule provides a better Cu passivation, but the shorter BT molecule favours a higher surface coverage. The terminal groups of 4-AA are responsible for a higher Cu surface wettability in water, compared to that with SAMs of the other molecules, and allow for an easier charge-transfer to the electrolyte and for a higher electrochemical capacitance. After long enough ageing, however, the 4-AA-based molecular films are able to self-organize and to provide a steadily improving copper passivation. Adlayers of the BT and 2-NT molecules, on the contrary, over a long time tend to protect less and less the Cu substrate, probably because of progressive electrolyte infiltration.
2009
aromatic thiols; contact angle; copper; electrochemistry; self-assembled monolayers; xps
01 Pubblicazione su rivista::01a Articolo in rivista
A multi-technique approach to the analysis of SAMs of aromatic thiols on copper / Caprioli, Fabrizio; Marco, Beccari; Martinelli, Andrea; DI CASTRO, Valeria; Decker, Franco. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - STAMPA. - 11:48(2009), pp. 11624-11630. [10.1039/b911834a]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/365339
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact