We analyze the structure of non radial $N$-point blow up solutions sequences for the Liouville type equation on the two dimensional unit disk, $$ -\lapl u(x)=\la \dfrac{\e{u(x)}}{\inb\e{u(x)} \dx}\;\;\mbox{in}\;\; D, \;\;u(x)=0\;\;\mbox{on}\;\; D.$$ In case $N=1,2$, we provide necessary and sufficient conditions for the existence of blow up solutions and, in the same spirit of \cite{cl1}, prove their axial symmetry with respect to the diameter joining the maximum points. Finally, we prove that a non radial one point blow up solution exists only if $\la-8\pi>0$.

On the shape of blowup solutions to a mean field equation / Bartolucci, Daniele; Montefusco, Eugenio. - In: NONLINEARITY. - ISSN 0951-7715. - STAMPA. - 19:(2006), pp. 611-631. [10.1088/0951-7715/19/3/005]

On the shape of blowup solutions to a mean field equation

BARTOLUCCI, DANIELE;MONTEFUSCO, Eugenio
2006

Abstract

We analyze the structure of non radial $N$-point blow up solutions sequences for the Liouville type equation on the two dimensional unit disk, $$ -\lapl u(x)=\la \dfrac{\e{u(x)}}{\inb\e{u(x)} \dx}\;\;\mbox{in}\;\; D, \;\;u(x)=0\;\;\mbox{on}\;\; D.$$ In case $N=1,2$, we provide necessary and sufficient conditions for the existence of blow up solutions and, in the same spirit of \cite{cl1}, prove their axial symmetry with respect to the diameter joining the maximum points. Finally, we prove that a non radial one point blow up solution exists only if $\la-8\pi>0$.
2006
.
01 Pubblicazione su rivista::01a Articolo in rivista
On the shape of blowup solutions to a mean field equation / Bartolucci, Daniele; Montefusco, Eugenio. - In: NONLINEARITY. - ISSN 0951-7715. - STAMPA. - 19:(2006), pp. 611-631. [10.1088/0951-7715/19/3/005]
File allegati a questo prodotto
File Dimensione Formato  
Bartolucci_On-the-shape_2006.pdf.pdf

solo gestori archivio

Note: nessuna
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 270.82 kB
Formato Adobe PDF
270.82 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/365246
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact