We analyze the structure of non radial $N$-point blow up solutions sequences for the Liouville type equation on the two dimensional unit disk, $$ -\lapl u(x)=\la \dfrac{\e{u(x)}}{\inb\e{u(x)} \dx}\;\;\mbox{in}\;\; D, \;\;u(x)=0\;\;\mbox{on}\;\; D.$$ In case $N=1,2$, we provide necessary and sufficient conditions for the existence of blow up solutions and, in the same spirit of \cite{cl1}, prove their axial symmetry with respect to the diameter joining the maximum points. Finally, we prove that a non radial one point blow up solution exists only if $\la-8\pi>0$.
On the shape of blowup solutions to a mean field equation / Bartolucci, Daniele; Montefusco, Eugenio. - In: NONLINEARITY. - ISSN 0951-7715. - STAMPA. - 19:(2006), pp. 611-631. [10.1088/0951-7715/19/3/005]
On the shape of blowup solutions to a mean field equation
BARTOLUCCI, DANIELE;MONTEFUSCO, Eugenio
2006
Abstract
We analyze the structure of non radial $N$-point blow up solutions sequences for the Liouville type equation on the two dimensional unit disk, $$ -\lapl u(x)=\la \dfrac{\e{u(x)}}{\inb\e{u(x)} \dx}\;\;\mbox{in}\;\; D, \;\;u(x)=0\;\;\mbox{on}\;\; D.$$ In case $N=1,2$, we provide necessary and sufficient conditions for the existence of blow up solutions and, in the same spirit of \cite{cl1}, prove their axial symmetry with respect to the diameter joining the maximum points. Finally, we prove that a non radial one point blow up solution exists only if $\la-8\pi>0$.File | Dimensione | Formato | |
---|---|---|---|
Bartolucci_On-the-shape_2006.pdf.pdf
solo gestori archivio
Note: nessuna
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
270.82 kB
Formato
Adobe PDF
|
270.82 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.