The inhomogeneity of turbulence in wall bounded flows induces the phenomenology called turbophoresis whereby inertial particles of suitable mass accumulate at the solid wall. Particles injected near the axis of a fully turbulent pipe flow, after an initial spreading phase, undergo a segregation process which eventually leads to a pseudoequilibrium distribution sufficiently downstream. Wall densities up to thousand times the reference value can be easily achieved. The process is discussed here by analyzing the direct numerical simulation (DNS) data of a spatially developing particle laden pipe flow under the assumption of dilute suspension. Development phase and asymptotic state are addressed in quantitative terms. A Shannon-like entropy is introduced to quantify the level of spreading/segregation achieved by the particle distributions along the pipe. This allows to define on a physically sound basis the length of the developing region and to summarize in a single indicator the accumulation level as a function of the particle response time. By conditional statistics, it is unequivocally shown that particles approach the wall dragged by relatively fast yet comparatively rare events where highly accumulating particles follow the fluid in-rush toward the wall. On the contrary, the outward particle flux takes place in the form of much more frequent and gentle motions away from the wall. The analysis of DNS data and a simple argument highlight the role of the elongated clusters of particles at the wall as essential features responsible for the eventual asymptotic equilibrium.

Spatial development of particle laden turbulent pipe flow / Picano, Francesco; Sardina, Gaetano; Casciola, Carlo Massimo. - In: PHYSICS OF FLUIDS. - ISSN 1070-6631. - STAMPA. - 21:(2009), pp. 093305-1-093305-15. [10.1063/1.3241992]

Spatial development of particle laden turbulent pipe flow

PICANO, Francesco;SARDINA, GAETANO;CASCIOLA, Carlo Massimo
2009

Abstract

The inhomogeneity of turbulence in wall bounded flows induces the phenomenology called turbophoresis whereby inertial particles of suitable mass accumulate at the solid wall. Particles injected near the axis of a fully turbulent pipe flow, after an initial spreading phase, undergo a segregation process which eventually leads to a pseudoequilibrium distribution sufficiently downstream. Wall densities up to thousand times the reference value can be easily achieved. The process is discussed here by analyzing the direct numerical simulation (DNS) data of a spatially developing particle laden pipe flow under the assumption of dilute suspension. Development phase and asymptotic state are addressed in quantitative terms. A Shannon-like entropy is introduced to quantify the level of spreading/segregation achieved by the particle distributions along the pipe. This allows to define on a physically sound basis the length of the developing region and to summarize in a single indicator the accumulation level as a function of the particle response time. By conditional statistics, it is unequivocally shown that particles approach the wall dragged by relatively fast yet comparatively rare events where highly accumulating particles follow the fluid in-rush toward the wall. On the contrary, the outward particle flux takes place in the form of much more frequent and gentle motions away from the wall. The analysis of DNS data and a simple argument highlight the role of the elongated clusters of particles at the wall as essential features responsible for the eventual asymptotic equilibrium.
2009
01 Pubblicazione su rivista::01a Articolo in rivista
Spatial development of particle laden turbulent pipe flow / Picano, Francesco; Sardina, Gaetano; Casciola, Carlo Massimo. - In: PHYSICS OF FLUIDS. - ISSN 1070-6631. - STAMPA. - 21:(2009), pp. 093305-1-093305-15. [10.1063/1.3241992]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/362393
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 83
social impact