This paper considers the maximization of information rates for the Gaussian frequency-selective interference channel, subject to power and spectral mask constraints on each link. To derive decentralized solutions that do not require any cooperation among the users, the optimization problem is formulated as a static noncooperative game of complete information. To achieve the so-called Nash equilibria of the game, we propose a new distributed algorithm called asynchronous iterative water-filling algorithm. In this algorithm, the users update their power spectral density (PSD) in a completely distributed and asynchronous way: some users may update their power allocation more frequently than others and they may even use outdated measurements of the received interference. The proposed algorithm represents a unified framework that encompasses and generalizes all known iterative water-filling algorithms, e.g., sequential and simultaneous versions. The main result of the paper consists of a unified set of conditions that guarantee the global converge of the proposed algorithm to the (unique) Nash equilibrium of the game.

Asynchronous Iterative Water-Filling for Gaussian Frequency-Selective Interference Channels / Scutari, Gesualdo; DANIEL P., Palomar; Barbarossa, Sergio. - In: IEEE TRANSACTIONS ON INFORMATION THEORY. - ISSN 0018-9448. - 54:(2008), pp. 2868-2878. [10.1109/TIT.2008.924723]

Asynchronous Iterative Water-Filling for Gaussian Frequency-Selective Interference Channels

SCUTARI, GESUALDO;BARBAROSSA, Sergio
2008

Abstract

This paper considers the maximization of information rates for the Gaussian frequency-selective interference channel, subject to power and spectral mask constraints on each link. To derive decentralized solutions that do not require any cooperation among the users, the optimization problem is formulated as a static noncooperative game of complete information. To achieve the so-called Nash equilibria of the game, we propose a new distributed algorithm called asynchronous iterative water-filling algorithm. In this algorithm, the users update their power spectral density (PSD) in a completely distributed and asynchronous way: some users may update their power allocation more frequently than others and they may even use outdated measurements of the received interference. The proposed algorithm represents a unified framework that encompasses and generalizes all known iterative water-filling algorithms, e.g., sequential and simultaneous versions. The main result of the paper consists of a unified set of conditions that guarantee the global converge of the proposed algorithm to the (unique) Nash equilibrium of the game.
2008
01 Pubblicazione su rivista::01a Articolo in rivista
Asynchronous Iterative Water-Filling for Gaussian Frequency-Selective Interference Channels / Scutari, Gesualdo; DANIEL P., Palomar; Barbarossa, Sergio. - In: IEEE TRANSACTIONS ON INFORMATION THEORY. - ISSN 0018-9448. - 54:(2008), pp. 2868-2878. [10.1109/TIT.2008.924723]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/362199
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 176
  • ???jsp.display-item.citation.isi??? 129
social impact