After over a century of extensive research, hemoglobin has become the prototype of allosteric and cooperative proteins. Its molecular structure, known in great detail, has allowed the design of hundreds of site directed mutations, aimed at interfering with its function, and thus at testing our hypotheses on the molecular mechanisms of allostery. The wealth of information thus obtained is difficult to read except for specialists, not only because it makes use of many different technical approaches, but also because of its intrinsically patchy nature. Moreover, several researchers have tried to assign specific roles to segments of the polypeptide chains, rather than to single residues, and have tested their hypotheses by multiple point mutations or by complete replacement with the homologous segment from a different hemoglobin to produce chimeric macromolecules. This approach is in great need of a revision since putative functionally relevant segments partially overlap. This review briefly describes the structure and function of hemoglobin, and analyzes the effect of point mutations, multiple mutations and segment replacement, with special attention to possible biotechnological applications, ranging from pharmacology (Hb solutions as resuscitating fluids and sources of the protein found in hemoglobinopathies for biochemical studies) to bioreactors. Occasional reference is made to site directed mutants of myoglobin, whenever this helps clarifying perplexing results obtained on hemoglobin.

The allosteric properties of hemoglobin: Insights from natural and site directed mutants / Bellelli, Andrea; Brunori, Maurizio; Miele, Adriana Erica; Panetta, Gianna; Vallone, Beatrice. - In: CURRENT PROTEIN & PEPTIDE SCIENCE. - ISSN 1389-2037. - STAMPA. - 7:1(2006), pp. 17-45. [10.2174/138920306775474121]

The allosteric properties of hemoglobin: Insights from natural and site directed mutants

BELLELLI, Andrea;BRUNORI, Maurizio;MIELE, Adriana Erica;PANETTA, GIANNA;VALLONE, Beatrice
2006

Abstract

After over a century of extensive research, hemoglobin has become the prototype of allosteric and cooperative proteins. Its molecular structure, known in great detail, has allowed the design of hundreds of site directed mutations, aimed at interfering with its function, and thus at testing our hypotheses on the molecular mechanisms of allostery. The wealth of information thus obtained is difficult to read except for specialists, not only because it makes use of many different technical approaches, but also because of its intrinsically patchy nature. Moreover, several researchers have tried to assign specific roles to segments of the polypeptide chains, rather than to single residues, and have tested their hypotheses by multiple point mutations or by complete replacement with the homologous segment from a different hemoglobin to produce chimeric macromolecules. This approach is in great need of a revision since putative functionally relevant segments partially overlap. This review briefly describes the structure and function of hemoglobin, and analyzes the effect of point mutations, multiple mutations and segment replacement, with special attention to possible biotechnological applications, ranging from pharmacology (Hb solutions as resuscitating fluids and sources of the protein found in hemoglobinopathies for biochemical studies) to bioreactors. Occasional reference is made to site directed mutants of myoglobin, whenever this helps clarifying perplexing results obtained on hemoglobin.
2006
allosteric core; cooperativity; hemoglobin; human hemoglobin; naturally occurring mutants; site directed mutagenesis; site directed mutants
01 Pubblicazione su rivista::01a Articolo in rivista
The allosteric properties of hemoglobin: Insights from natural and site directed mutants / Bellelli, Andrea; Brunori, Maurizio; Miele, Adriana Erica; Panetta, Gianna; Vallone, Beatrice. - In: CURRENT PROTEIN & PEPTIDE SCIENCE. - ISSN 1389-2037. - STAMPA. - 7:1(2006), pp. 17-45. [10.2174/138920306775474121]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/361921
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 42
social impact