Objectives: EEG scalp potential distributions recorded in humans are affected by low spatial resolution and by the dependence on the electrical reference used. High resolution EEG technologies are available to drastically increase the spatial resolution of the raw EEG. Such technologies include the computation of surface Laplacian (SL) of the recorded potentials, as well as the use of realistic head models to estimate the cortical sources via linear inverse procedure (low resolution brain electromagnetic tomography, LORETA). However, these deblurring procedures are generally used in conjunction with EEG recordings with 64-128 scalp electrodes and with realistic head models obtained via sequential magnetic resonance images (MRIs) of the subjects. Such recording setup it is not often available in the clinical context, due to both the unavailability of these technologies and the scarce compliance of the patients with them. In this study we addressed the use of SL and LORETA deblurring techniques to analyze data from a standard 10-20 system (19 electrodes) in a group of Alzheimer disease (AD) patients. Methods: EEG data related to unilateral finger movements were gathered from 10 patients affected by AD. SL and LORETA techniques were applied for source estimation of EEG data. The use of MRIs for the construction of head models was avoided by using the quasi-realistic head model of the Brain Imaging Neurology Institute of Montreal. Results: A similar cortical activity estimated by the SL and LORETA techniques was observed during an identical time period of the acquired EEG data in the examined population. Conclusions: The results of the present study suggest that both SL and LORETA approaches can be usefully applied in the clinical context, by using quasi-realistic head modeling and a standard 10-20 system as electrode montage (19 electrodes). These results represent a reciprocal cross-validation of the two mathematically independent techniques in a clinical environment.

EEG deblurring techniques in a clinical context / Cincotti, Febo; Babiloni, Claudio; C., Miniussi; Carducci, Filippo; D., Moretti; Salinari, Serenella; R., Pasqualmarqui; P. M., Rossini; Babiloni, Fabio. - In: METHODS OF INFORMATION IN MEDICINE. - ISSN 0026-1270. - STAMPA. - 43:1(2004), pp. 114-117. (Intervento presentato al convegno 4th International Workshop on Biosignal Interpretation (BSI2002) tenutosi a Villa Olmo, ITALY nel JUN 24-26, 2002).

EEG deblurring techniques in a clinical context

CINCOTTI, FEBO;BABILONI, CLAUDIO;CARDUCCI, Filippo;SALINARI, Serenella;BABILONI, Fabio
2004

Abstract

Objectives: EEG scalp potential distributions recorded in humans are affected by low spatial resolution and by the dependence on the electrical reference used. High resolution EEG technologies are available to drastically increase the spatial resolution of the raw EEG. Such technologies include the computation of surface Laplacian (SL) of the recorded potentials, as well as the use of realistic head models to estimate the cortical sources via linear inverse procedure (low resolution brain electromagnetic tomography, LORETA). However, these deblurring procedures are generally used in conjunction with EEG recordings with 64-128 scalp electrodes and with realistic head models obtained via sequential magnetic resonance images (MRIs) of the subjects. Such recording setup it is not often available in the clinical context, due to both the unavailability of these technologies and the scarce compliance of the patients with them. In this study we addressed the use of SL and LORETA deblurring techniques to analyze data from a standard 10-20 system (19 electrodes) in a group of Alzheimer disease (AD) patients. Methods: EEG data related to unilateral finger movements were gathered from 10 patients affected by AD. SL and LORETA techniques were applied for source estimation of EEG data. The use of MRIs for the construction of head models was avoided by using the quasi-realistic head model of the Brain Imaging Neurology Institute of Montreal. Results: A similar cortical activity estimated by the SL and LORETA techniques was observed during an identical time period of the acquired EEG data in the examined population. Conclusions: The results of the present study suggest that both SL and LORETA approaches can be usefully applied in the clinical context, by using quasi-realistic head modeling and a standard 10-20 system as electrode montage (19 electrodes). These results represent a reciprocal cross-validation of the two mathematically independent techniques in a clinical environment.
2004
cerebral cortex; loreta; motor control; surface laplacian; voluntary movements
01 Pubblicazione su rivista::01a Articolo in rivista
EEG deblurring techniques in a clinical context / Cincotti, Febo; Babiloni, Claudio; C., Miniussi; Carducci, Filippo; D., Moretti; Salinari, Serenella; R., Pasqualmarqui; P. M., Rossini; Babiloni, Fabio. - In: METHODS OF INFORMATION IN MEDICINE. - ISSN 0026-1270. - STAMPA. - 43:1(2004), pp. 114-117. (Intervento presentato al convegno 4th International Workshop on Biosignal Interpretation (BSI2002) tenutosi a Villa Olmo, ITALY nel JUN 24-26, 2002).
File allegati a questo prodotto
File Dimensione Formato  
VE_2004_11573-36165.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 326.64 kB
Formato Adobe PDF
326.64 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/36165
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact