Objective: The present study investigated the properties of feedback-related negativity (FRN) and P3 component of the event-related potentials (ERPs) and their neural sources localization as neurocognitive correlates of the behavioural inhibition and behavioural activation systems (BIS/BAS). The association between BIS/BAS function and anterior cortical asymmetry was tested. Methods: Fifty right-handed women were investigated with 30-channel recordings during an instrumental Go/No-Go learning task. ERPs were elicited to feedback signals indicating monetary losses and monetary gains. Learning performance, FRN, and P3 amplitude and latency measures were calculated and related to BIS and BAS measures by means of ANOVA and correlation analysis. The neural sources of FRN and P3 components of the ERPs were estimated using LORETA software. A resting EEG-alpha-power (8-13 Hz) asymmetry measure was obtained. Results: High levels of Reward Responsiveness (RR), a first order factor of the BAS, were associated with shorter RTs and enhanced positive feelings. The FRN was larger to signals indicating monetary Loss as compared to monetary Gain and enhanced with higher BIS and individual learning ability. Higher RR scores were related to greater left-sided resting frontal cortical asymmetry associated with approach orientation. High-RR subjects, as compared to Low-RR ones, had a smaller P3 amplitude for Go/Loss signals. The P3 latency to No-Go/Gain signals was the best positive predictor of RR. LORETA source localization for the FRN component displayed significantly higher brain electrical activity in left-fusiform gyrus and right superior temporal gyrus to monetary Loss in comparison to monetary Gain after incorrect No-Go responses. For the P3 wave, the monetary Loss produced significantly higher activations in the left superior parietal lobule, right postcentral gyrus, and in the ACC. Conclusion: The FRN was sensitive to cues of punishment and higher BIS was uniquely related to a larger FRN amplitude on No-Go/Loss trials, linking BIS with conflict monitoring and sensitivity to No-Go cues. Furthermore, the significant interaction found between BIS and RR on FRN amplitude together with the findings linking High-RR levels with shorter RTs, smaller P3 amplitudes and enhanced positive feelings are in line with the hypothesis that both BIS and BAS have the potential to influence punishment-mediated and reward-mediated behaviour. Significance: Results open up new perspectives for future investigations on the relationship between BIS/BAS measures and ERP components to monetary reward during learning. (C) 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Event-related components of the punishment and reward sensitivity / DE PASCALIS, Vilfredo; Varriale, Vincenzo; Laura, D'Antuono. - In: CLINICAL NEUROPHYSIOLOGY. - ISSN 1388-2457. - ELETTRONICO. - 121:1(2010), pp. 60-76. [10.1016/j.clinph.2009.10.004]
Event-related components of the punishment and reward sensitivity
DE PASCALIS, Vilfredo;VARRIALE, Vincenzo;
2010
Abstract
Objective: The present study investigated the properties of feedback-related negativity (FRN) and P3 component of the event-related potentials (ERPs) and their neural sources localization as neurocognitive correlates of the behavioural inhibition and behavioural activation systems (BIS/BAS). The association between BIS/BAS function and anterior cortical asymmetry was tested. Methods: Fifty right-handed women were investigated with 30-channel recordings during an instrumental Go/No-Go learning task. ERPs were elicited to feedback signals indicating monetary losses and monetary gains. Learning performance, FRN, and P3 amplitude and latency measures were calculated and related to BIS and BAS measures by means of ANOVA and correlation analysis. The neural sources of FRN and P3 components of the ERPs were estimated using LORETA software. A resting EEG-alpha-power (8-13 Hz) asymmetry measure was obtained. Results: High levels of Reward Responsiveness (RR), a first order factor of the BAS, were associated with shorter RTs and enhanced positive feelings. The FRN was larger to signals indicating monetary Loss as compared to monetary Gain and enhanced with higher BIS and individual learning ability. Higher RR scores were related to greater left-sided resting frontal cortical asymmetry associated with approach orientation. High-RR subjects, as compared to Low-RR ones, had a smaller P3 amplitude for Go/Loss signals. The P3 latency to No-Go/Gain signals was the best positive predictor of RR. LORETA source localization for the FRN component displayed significantly higher brain electrical activity in left-fusiform gyrus and right superior temporal gyrus to monetary Loss in comparison to monetary Gain after incorrect No-Go responses. For the P3 wave, the monetary Loss produced significantly higher activations in the left superior parietal lobule, right postcentral gyrus, and in the ACC. Conclusion: The FRN was sensitive to cues of punishment and higher BIS was uniquely related to a larger FRN amplitude on No-Go/Loss trials, linking BIS with conflict monitoring and sensitivity to No-Go cues. Furthermore, the significant interaction found between BIS and RR on FRN amplitude together with the findings linking High-RR levels with shorter RTs, smaller P3 amplitudes and enhanced positive feelings are in line with the hypothesis that both BIS and BAS have the potential to influence punishment-mediated and reward-mediated behaviour. Significance: Results open up new perspectives for future investigations on the relationship between BIS/BAS measures and ERP components to monetary reward during learning. (C) 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.