This paper deals with the Music/Speech classification problem, starting from a set of features extracted directly from compressed audio data. The proposed classification system is able to label audio sequences stored as compressed MPEG layer III files. Decoding and analyzing in a unique stage is a fundamental tool for audio streaming applications, such as real time classification. Moreover, the techniques described herein provide useful tools in the management (data tagging, summarization, etc.) of a digital music library. The adopted set of short-time features are computed from the spectral information available in the decoding stage. In this paper, we show that for the classification problem at hand this set of features is redundant and can be dramatically pruned. To this aim we used an optimization strategy based on principal component analysis and genetic algorithms. The results show a very interesting classification accuracy using just one short-time feature. © 2006 IEEE.

Optimal Short-Time Features for Music/Speech Classification of Compressed Audio Data / Rizzi, Antonello; Buccino, NICOLA MAURIZIO; Panella, Massimo; Uncini, Aurelio. - ELETTRONICO. - CD-ROM:(2006), pp. 1-6. (Intervento presentato al convegno International Conference on Computational Intelligence for Modelling, Control and Automation & International Conference on Intelligent Agents, Web Technologies and Internet Commerce tenutosi a Sydney; Australia nel 28 novembre-01 dicembre 2006) [10.1109/CIMCA.2006.160].

Optimal Short-Time Features for Music/Speech Classification of Compressed Audio Data

RIZZI, Antonello
;
BUCCINO, NICOLA MAURIZIO;PANELLA, Massimo;UNCINI, Aurelio
2006

Abstract

This paper deals with the Music/Speech classification problem, starting from a set of features extracted directly from compressed audio data. The proposed classification system is able to label audio sequences stored as compressed MPEG layer III files. Decoding and analyzing in a unique stage is a fundamental tool for audio streaming applications, such as real time classification. Moreover, the techniques described herein provide useful tools in the management (data tagging, summarization, etc.) of a digital music library. The adopted set of short-time features are computed from the spectral information available in the decoding stage. In this paper, we show that for the classification problem at hand this set of features is redundant and can be dramatically pruned. To this aim we used an optimization strategy based on principal component analysis and genetic algorithms. The results show a very interesting classification accuracy using just one short-time feature. © 2006 IEEE.
2006
International Conference on Computational Intelligence for Modelling, Control and Automation & International Conference on Intelligent Agents, Web Technologies and Internet Commerce
Audio streaming applications; Real time classification;
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Optimal Short-Time Features for Music/Speech Classification of Compressed Audio Data / Rizzi, Antonello; Buccino, NICOLA MAURIZIO; Panella, Massimo; Uncini, Aurelio. - ELETTRONICO. - CD-ROM:(2006), pp. 1-6. (Intervento presentato al convegno International Conference on Computational Intelligence for Modelling, Control and Automation & International Conference on Intelligent Agents, Web Technologies and Internet Commerce tenutosi a Sydney; Australia nel 28 novembre-01 dicembre 2006) [10.1109/CIMCA.2006.160].
File allegati a questo prodotto
File Dimensione Formato  
Dichiarazione_conformità.pdf

solo gestori archivio

Tipologia: Altro materiale allegato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 230.6 kB
Formato Adobe PDF
230.6 kB Adobe PDF   Contatta l'autore
Rizzi_Optimal-short-time_2006.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 353.32 kB
Formato Adobe PDF
353.32 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/361018
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact