We explored the cortical dynamics during movements of an unaffected body part in tetraplegic subjects with chronic spinal cord injury (SCI). The aims were to find out whether the intact movements were associated with a physiological time-varying pattern of activity in the motor-related cortical areas and whether the primary motor area (MI) activation followed a somatotopic distribution. Event-related potentials to self-initiated lip movements were analyzed by means of cortical source imaging of EEG recorded from seven tetraplegic subjects and seven control subjects. Regions of interest (ROIs) were selected on individual MRI and the time-varying electrophysiologic activity (cortical current density, CCD) was estimated on these ROIs and subjected to across-subject analysis. A significant, bilateral movement-related pattern of MI activation was detected during motor task execution in SCI patients as well as in controls. The site of local maxima activation displayed a symmetrical discrete distribution within MI, consistently with a putative somatotopic lip representation, in all the subjects. The supplementary motor area proper (SMAp) was always coactivated with MI and coactivation was characterized by a time course with typical premotion and motion phases over both motor areas. A clear-cut temporal delay between the SMAp and MI activation did not occur either in SCI patients or in controls. These findings obtained with noninvasive neuroelectrical source imaging document that in chronic SCI subjects "executive" motor areas are engaged with a preserved temporal and spatial pattern during preparation and execution of intact movements.

Motor-related cortical dynamics to intact movements in tetraplegics as revealed by high-resolution EEG / Donatella, Mattia; Cincotti, Febo; Marco, Mattiocco; Giorgio, Scivoletto; Maria Grazia, Marciani; Babiloni, Fabio. - In: HUMAN BRAIN MAPPING. - ISSN 1065-9471. - 27:6(2006), pp. 510-519. [10.1002/hbm.20195]

Motor-related cortical dynamics to intact movements in tetraplegics as revealed by high-resolution EEG

CINCOTTI, FEBO;BABILONI, Fabio
2006

Abstract

We explored the cortical dynamics during movements of an unaffected body part in tetraplegic subjects with chronic spinal cord injury (SCI). The aims were to find out whether the intact movements were associated with a physiological time-varying pattern of activity in the motor-related cortical areas and whether the primary motor area (MI) activation followed a somatotopic distribution. Event-related potentials to self-initiated lip movements were analyzed by means of cortical source imaging of EEG recorded from seven tetraplegic subjects and seven control subjects. Regions of interest (ROIs) were selected on individual MRI and the time-varying electrophysiologic activity (cortical current density, CCD) was estimated on these ROIs and subjected to across-subject analysis. A significant, bilateral movement-related pattern of MI activation was detected during motor task execution in SCI patients as well as in controls. The site of local maxima activation displayed a symmetrical discrete distribution within MI, consistently with a putative somatotopic lip representation, in all the subjects. The supplementary motor area proper (SMAp) was always coactivated with MI and coactivation was characterized by a time course with typical premotion and motion phases over both motor areas. A clear-cut temporal delay between the SMAp and MI activation did not occur either in SCI patients or in controls. These findings obtained with noninvasive neuroelectrical source imaging document that in chronic SCI subjects "executive" motor areas are engaged with a preserved temporal and spatial pattern during preparation and execution of intact movements.
2006
cortical current density; spinal cord injury; high-resolution eeg; intact movements
01 Pubblicazione su rivista::01a Articolo in rivista
Motor-related cortical dynamics to intact movements in tetraplegics as revealed by high-resolution EEG / Donatella, Mattia; Cincotti, Febo; Marco, Mattiocco; Giorgio, Scivoletto; Maria Grazia, Marciani; Babiloni, Fabio. - In: HUMAN BRAIN MAPPING. - ISSN 1065-9471. - 27:6(2006), pp. 510-519. [10.1002/hbm.20195]
File allegati a questo prodotto
File Dimensione Formato  
VE_2006_11573-360634.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 843.99 kB
Formato Adobe PDF
843.99 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/360634
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact