We study the motion of a classical point body of mass M, moving under the action of a constant force of intensity E and immersed in a Vlasov fluid of free particles, interacting with the body via a bounded short range potential Psi. We prove that if its initial velocity is large enough then the body escapes to infinity increasing its speed without any bound (runaway effect). Moreover, the body asymptotically reaches a uniformly accelerated motion with acceleration E/M. We then discuss at a heuristic level the case in which Psi(r) diverges at short distances like gr(-alpha), g, alpha > 0, by showing that the runaway effect still occurs if alpha < 2

Speedy motions of a body immersed in an infinitely extended medium / Butta', Paolo; Ferrari, Giorgio; Marchioro, Carlo. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - STAMPA. - 140:(2010), pp. 1182-1194. [10.1007/s10955-010-0036-3]

Speedy motions of a body immersed in an infinitely extended medium

BUTTA', Paolo;FERRARI, GIORGIO;MARCHIORO, Carlo
2010

Abstract

We study the motion of a classical point body of mass M, moving under the action of a constant force of intensity E and immersed in a Vlasov fluid of free particles, interacting with the body via a bounded short range potential Psi. We prove that if its initial velocity is large enough then the body escapes to infinity increasing its speed without any bound (runaway effect). Moreover, the body asymptotically reaches a uniformly accelerated motion with acceleration E/M. We then discuss at a heuristic level the case in which Psi(r) diverges at short distances like gr(-alpha), g, alpha > 0, by showing that the runaway effect still occurs if alpha < 2
2010
01 Pubblicazione su rivista::01a Articolo in rivista
Speedy motions of a body immersed in an infinitely extended medium / Butta', Paolo; Ferrari, Giorgio; Marchioro, Carlo. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - STAMPA. - 140:(2010), pp. 1182-1194. [10.1007/s10955-010-0036-3]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/360160
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact