In this note, we present a set of electrical conductivity measurements of polyion-induced liposome aggregate aqueous suspensions that supports evidence for the existence of a cluster phase in low-density colloidal systems. Heavily NaCl-loaded liposomes, dispersed in a low-conductivity aqueous solution, are forced by electrostatic interactions with oppositely charged polyions to build up into individual aggregates, where the single vesicles maintain their integrity and, upon an external force, are able to release their ionic content. The conductivity data, within the effective medium approximation theory for heterogeneous systems, are in agreement with the picture of a suspension built up by clusters of vesicles which are able to preserve their content from the external medium. This finding opens new possibilities in multicompartment drug delivery techniques. (c) 2006 Elsevier Inc. All rights reserved.

Conductometric evidence for intact polyion-induced liposome clusters / Bordi, Federico; Cametti, Cesare; Sennato, Simona; D., Viscomi. - In: JOURNAL OF COLLOID AND INTERFACE SCIENCE. - ISSN 0021-9797. - 304:2(2006), pp. 512-517. [10.1016/j.jcis.2006.09.009]

Conductometric evidence for intact polyion-induced liposome clusters

BORDI, FEDERICO;CAMETTI, Cesare;SENNATO, Simona;
2006

Abstract

In this note, we present a set of electrical conductivity measurements of polyion-induced liposome aggregate aqueous suspensions that supports evidence for the existence of a cluster phase in low-density colloidal systems. Heavily NaCl-loaded liposomes, dispersed in a low-conductivity aqueous solution, are forced by electrostatic interactions with oppositely charged polyions to build up into individual aggregates, where the single vesicles maintain their integrity and, upon an external force, are able to release their ionic content. The conductivity data, within the effective medium approximation theory for heterogeneous systems, are in agreement with the picture of a suspension built up by clusters of vesicles which are able to preserve their content from the external medium. This finding opens new possibilities in multicompartment drug delivery techniques. (c) 2006 Elsevier Inc. All rights reserved.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/360060
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact