Objective. The aim of this study is to perform finite element investigation of the mechanical behaviour of a prosthesized human femur during stair climbing. In order to numerically analyze the stress shielding phenomenon in a femoral bone with an artificial hip replacement, the strain and stress distributions both in the femur and in the stem were evaluated by using the finite element method. Methods. From a set of CT images the geometry of the femur was recovered and meshed. An operation of virtual surgery allowed to insert the metal stem (constructed by a CAD code) in the medullary canal. Results. Numerical simulation showed evidence that stresses and strain energy density increase in the distal zone of the stem-bone interface of the prosthesized femur; and hence a load transfer is determined from proximal zones to distal ones. As expected, lateral and medial zones are subjected to, respectively, tensile and compressive normal stresses in z-direction, absolute maxima being attained at the distal part of the diaphysis. Conclusions. The development of a computational model allowed to deal with the complexity of the biomechanical problem and to describe quantitatively the mechanical behaviour of bone tissue in contact with the metal stem. The calculated results motivate the performed analyses because they are sufficient to activate the mechanisms of deposition and resorption in the bone tissue at contact with the artificial biomaterial. Thus, stair climbing confirms to be a critical task for primary stability of the prosthesized femur.

Mechanical behaviour of physiological and prosthesized human femurs during stair climbing: a comparative analysis via 3-D numerical simulation / Andreaus, Ugo; Colloca, Michele; Anna, Toscano. - In: MINERVA ORTOPEDICA E TRAUMATOLOGICA. - ISSN 0394-3410. - STAMPA. - 59(4):(2008), pp. 213-220.

Mechanical behaviour of physiological and prosthesized human femurs during stair climbing: a comparative analysis via 3-D numerical simulation.

ANDREAUS, Ugo;COLLOCA, Michele;
2008

Abstract

Objective. The aim of this study is to perform finite element investigation of the mechanical behaviour of a prosthesized human femur during stair climbing. In order to numerically analyze the stress shielding phenomenon in a femoral bone with an artificial hip replacement, the strain and stress distributions both in the femur and in the stem were evaluated by using the finite element method. Methods. From a set of CT images the geometry of the femur was recovered and meshed. An operation of virtual surgery allowed to insert the metal stem (constructed by a CAD code) in the medullary canal. Results. Numerical simulation showed evidence that stresses and strain energy density increase in the distal zone of the stem-bone interface of the prosthesized femur; and hence a load transfer is determined from proximal zones to distal ones. As expected, lateral and medial zones are subjected to, respectively, tensile and compressive normal stresses in z-direction, absolute maxima being attained at the distal part of the diaphysis. Conclusions. The development of a computational model allowed to deal with the complexity of the biomechanical problem and to describe quantitatively the mechanical behaviour of bone tissue in contact with the metal stem. The calculated results motivate the performed analyses because they are sufficient to activate the mechanisms of deposition and resorption in the bone tissue at contact with the artificial biomaterial. Thus, stair climbing confirms to be a critical task for primary stability of the prosthesized femur.
2008
Finite Element Analysis; Implant Stability; Stress Analysis; Stress Shielding; Uncemented Total Hip Prosthesis
01 Pubblicazione su rivista::01a Articolo in rivista
Mechanical behaviour of physiological and prosthesized human femurs during stair climbing: a comparative analysis via 3-D numerical simulation / Andreaus, Ugo; Colloca, Michele; Anna, Toscano. - In: MINERVA ORTOPEDICA E TRAUMATOLOGICA. - ISSN 0394-3410. - STAMPA. - 59(4):(2008), pp. 213-220.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/360046
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact