Recent findings proposed that the cerebellum and the striatum, key structures in motor control, are more interconnected than commonly believed, and that the cerebellum may influence striatal activity. In the present study, the possible changes of synaptic transmission in the striatum of hemicerebellectomized rats have been investigated. Neurophysiological recordings showed a significant facilitation of glutamate transmission in the contralateral striatum occurring early following hemicerebellectomy. This process of synaptic adaptation appears to be relevant for the compensation of cerebellar deficits. Accordingly, pharmacological blockade of glutamate N-methyl-D-aspartate (NMDA) receptors with MK-801 prevented the rearrangement of excitatory synapses in the striatum and interfered with the recovery from motor disturbances in rats with cerebellar lesions. Hemicerebellectomy also perturbed gamma-aminobutyric acid (GABA) transmission in contralateral but not ipsilateral striatum. The present findings advance the role of striatal excitatory transmission in the compensation of cerebellar deficits, providing support to the notion that adaptations of striatal function exert a role in the recovery of cerebellar symptoms.

Adaptations of glutamatergic synapses in the striatum contribute to recovery from cerebellar damage / Diego, Centonze; Rossi, Stefano; DE BARTOLO, Paola; Valentina De, Chiara; Foti, FRANCESCA IRENE; Alessandra, Musella; Giorgia, Mataluni; Stefano, Rossi; Giorgio, Bernardi; Giacomo, Koch; Petrosini, Laura. - In: EUROPEAN JOURNAL OF NEUROSCIENCE. - ISSN 0953-816X. - 27:8(2008), pp. 2188-2196. [10.1111/j.1460-9568.2008.06182.x]

Adaptations of glutamatergic synapses in the striatum contribute to recovery from cerebellar damage

ROSSI, STEFANO;DE BARTOLO, Paola;FOTI, FRANCESCA IRENE;PETROSINI, Laura
2008

Abstract

Recent findings proposed that the cerebellum and the striatum, key structures in motor control, are more interconnected than commonly believed, and that the cerebellum may influence striatal activity. In the present study, the possible changes of synaptic transmission in the striatum of hemicerebellectomized rats have been investigated. Neurophysiological recordings showed a significant facilitation of glutamate transmission in the contralateral striatum occurring early following hemicerebellectomy. This process of synaptic adaptation appears to be relevant for the compensation of cerebellar deficits. Accordingly, pharmacological blockade of glutamate N-methyl-D-aspartate (NMDA) receptors with MK-801 prevented the rearrangement of excitatory synapses in the striatum and interfered with the recovery from motor disturbances in rats with cerebellar lesions. Hemicerebellectomy also perturbed gamma-aminobutyric acid (GABA) transmission in contralateral but not ipsilateral striatum. The present findings advance the role of striatal excitatory transmission in the compensation of cerebellar deficits, providing support to the notion that adaptations of striatal function exert a role in the recovery of cerebellar symptoms.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/358578
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact