Approximations of the resonant non-linear normal modes of a general class of weakly non-linear one-dimensional continuous systems with quadratic and cubic geometric non-linearities are constructed for the cases of two-to-one, one-to-one, and three-to-one internal resonances. Two analytical approaches are employed: the full-basis Galerkin discretization approach and the direct treatment, both based on use of the method of multiple scales as reduction technique. The procedures yield the uniform expansions of the displacement field and the normal forms governing the slow modulations of the amplitudes and phases of the modes. The non-linear interaction coefficients appearing in the normal forms are obtained in the form of infinite series with the discretization approach or as modal projections of second-order spatial functions with the direct approach. A systematic discussion on the existence and stability of coupled/uncoupled non-linear normal modes is presented. Closed-form conditions for non-linear orthogonality of the modes, in a global and local sense, are discussed. A mechanical interpretation of these conditions in terms of virtual works is also provided.
Resonant nonlinear normal modes. Part I: Analytical treatment for one-dimensional structural systems / Lacarbonara, Walter; Rega, Giuseppe; Nayfeh, A. H.. - In: INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS. - ISSN 0020-7462. - STAMPA. - 38:6(2002), pp. 851-872. [10.1016/S0020-7462(02)00033-1]
Resonant nonlinear normal modes. Part I: Analytical treatment for one-dimensional structural systems
LACARBONARA, Walter;REGA, GIUSEPPE;
2002
Abstract
Approximations of the resonant non-linear normal modes of a general class of weakly non-linear one-dimensional continuous systems with quadratic and cubic geometric non-linearities are constructed for the cases of two-to-one, one-to-one, and three-to-one internal resonances. Two analytical approaches are employed: the full-basis Galerkin discretization approach and the direct treatment, both based on use of the method of multiple scales as reduction technique. The procedures yield the uniform expansions of the displacement field and the normal forms governing the slow modulations of the amplitudes and phases of the modes. The non-linear interaction coefficients appearing in the normal forms are obtained in the form of infinite series with the discretization approach or as modal projections of second-order spatial functions with the direct approach. A systematic discussion on the existence and stability of coupled/uncoupled non-linear normal modes is presented. Closed-form conditions for non-linear orthogonality of the modes, in a global and local sense, are discussed. A mechanical interpretation of these conditions in terms of virtual works is also provided.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.