In eukaryotes, small amounts of nitrite confer cytoprotection against ischemia/reperfusion-related tissue damage in vivo, possibly via reduction to nitric oxide (NO) and inhibition of mitochondrial function. Several hemeproteins are involved in this protective mechanism, starting with deoxyhemoglobin, which is capable of reducing nitrite. In facultative aerobic bacteria, such as Pseudomonas aeruginosa, nitrite is reduced to NO by specialized heme-containing enzymes called cd(1) nitrite reductases. The details of their catalytic mechanism are summarized below, together with a hypothesis on the biological role of the unusual d(1)-heme, which, in the reduced state, shows unique properties (very high affinity for nitrite and exceptionally fast dissociation of NO). Our results support the idea that the nitrite-based reactions of contemporary eukaryotes are a vestige of earlier bacterial biochemical pathways. The evidence that nitrite reductase activities of enzymes with different cellular roles and biochemical features still exist today highlights the importance of nitrite in cellular homeostasis.
Nitrite reduction: a ubiquitous function from a pre-aerobic past / Cutruzzola', Francesca; Rinaldo, Serena; Castiglione, Nicoletta; Giardina, Giorgio; Israel, Pecht; Brunori, Maurizio. - In: BIOESSAYS. - ISSN 0265-9247. - 31:8(2009), pp. 885-891. [10.1002/bies.200800235]
Nitrite reduction: a ubiquitous function from a pre-aerobic past
CUTRUZZOLA', Francesca;RINALDO, Serena;CASTIGLIONE, NICOLETTA;GIARDINA, Giorgio;BRUNORI, Maurizio
2009
Abstract
In eukaryotes, small amounts of nitrite confer cytoprotection against ischemia/reperfusion-related tissue damage in vivo, possibly via reduction to nitric oxide (NO) and inhibition of mitochondrial function. Several hemeproteins are involved in this protective mechanism, starting with deoxyhemoglobin, which is capable of reducing nitrite. In facultative aerobic bacteria, such as Pseudomonas aeruginosa, nitrite is reduced to NO by specialized heme-containing enzymes called cd(1) nitrite reductases. The details of their catalytic mechanism are summarized below, together with a hypothesis on the biological role of the unusual d(1)-heme, which, in the reduced state, shows unique properties (very high affinity for nitrite and exceptionally fast dissociation of NO). Our results support the idea that the nitrite-based reactions of contemporary eukaryotes are a vestige of earlier bacterial biochemical pathways. The evidence that nitrite reductase activities of enzymes with different cellular roles and biochemical features still exist today highlights the importance of nitrite in cellular homeostasis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.